Sum of n digit numbers divisible by a given number

Given n and a number, the task is to find the sum of n digit numbers that are divisible by given number.

Examples:

Input : n = 2, number = 7
Output : 728
There are nine n digit numbers that
are divisible by 7. Numbers are 14+ 
21 + 28 + 35 + 42 + 49 + .... + 97.

Input : n = 3, number = 7
Output : 70336

Input : n = 3, number = 4
Output : 124200

Native Approach: Traverse through all n digit numbers. For every number check for divisibility, and make the sum.

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// Simple CPP program to sum of n digit
// divisible numbers.
#include <cmath>
#include <iostream>
using namespace std;
  
// Returns sum of n digit numbers
// divisible by 'number'
int totalSumDivisibleByNum(int n, int number)
{
    // compute the first and last term
    int firstnum = pow(10, n - 1);
    int lastnum = pow(10, n);
      
    // sum of number which having
    // n digit and divisible by number
    int sum = 0;
    for (int i = firstnum; i < lastnum; i++)
        if (i % number == 0)
            sum += i;
    return sum;
}
  
// Driver code
int main()
{
    int n = 3, num = 7;
    cout << totalSumDivisibleByNum(n, num) << "\n";
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Simple Java program to sum of n digit
// divisible numbers.
import java.io.*;
  
class GFG {
      
    // Returns sum of n digit numbers
    // divisible by 'number'
    static int totalSumDivisibleByNum(int n, int number)
    {
        // compute the first and last term
        int firstnum = (int)Math.pow(10, n - 1);
        int lastnum = (int)Math.pow(10, n);
          
        // sum of number which having
        // n digit and divisible by number
        int sum = 0;
        for (int i = firstnum; i < lastnum; i++)
            if (i % number == 0)
                sum += i;
        return sum;
    }
  
    // Driver code
    public static void main (String[] args) 
    {
        int n = 3, num = 7;
        System.out.println(totalSumDivisibleByNum(n, num));
    }
}
  
// This code is contributed by Ajit.

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Simple Python 3 program to sum  
# of n digit divisible numbers.
  
# Returns sum of n digit numbers
# divisible by 'number'
def totalSumDivisibleByNum(n, number):
  
    # compute the first and last term
    firstnum = pow(10, n - 1)
    lastnum = pow(10, n)
      
    # sum of number which having
    # n digit and divisible by number
    sum = 0
    for i in range(firstnum, lastnum):
        if (i % number == 0):
            sum += i
    return sum
  
  
# Driver code
n = 3; num = 7
print(totalSumDivisibleByNum(n, num))
  
# This code is contributed by Smitha Dinesh Semwal

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// Simple C# program to sum of n digit
// divisible numbers.
using System;
  
class GFG {
      
    // Returns sum of n digit numbers
    // divisible by 'number'
    static int totalSumDivisibleByNum(int n, int number)
    {
          
        // compute the first and last term
        int firstnum = (int)Math.Pow(10, n - 1);
        int lastnum = (int)Math.Pow(10, n);
          
        // sum of number which having
        // n digit and divisible by number
        int sum = 0;
          
        for (int i = firstnum; i < lastnum; i++)
            if (i % number == 0)
                sum += i;
                  
        return sum;
    }
  
    // Driver code
    public static void Main () 
    {
        int n = 3, num = 7;
          
        Console.WriteLine(totalSumDivisibleByNum(n, num));
    }
}
  
// This code is contributed by vt_m.

chevron_right


PHP

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
// Simple PHP program to sum of
// n digit divisible numbers.
  
// Returns sum of n digit numbers
// divisible by 'number'
function totalSumDivisibleByNum($n, $number)
{
      
    // compute the first and last term
    $firstnum = pow(10, $n - 1);
    $lastnum = pow(10, $n);
      
    // sum of number which having
    // n digit and divisible by number
    $sum = 0;
    for ($i = $firstnum; $i < $lastnum; $i++)
        if ($i % $number == 0)
            $sum += $i;
    return $sum;
}
  
    // Driver code
    $n = 3;$num = 7;
    echo totalSumDivisibleByNum($n, $num) , "\n";
      
// This code is contributed by aj_36
?>

chevron_right


Output:

70336

Efficient Method :
First, find the count of n digit numbers divisible by a given number. Then apply formula for sum of AP.

    count/2  * (first-term + last-term)

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// Efficient CPP program to find the sum
// divisible numbers.
#include <cmath>
#include <iostream>
using namespace std;
  
// find the Sum of having n digit and
// divisible by the number
int totalSumDivisibleByNum(int digit, 
                           int number)
{
    // compute the first and last term
    int firstnum = pow(10, digit - 1);
    int lastnum = pow(10, digit);
  
    // first number which is divisible
    // by given number
    firstnum = (firstnum - firstnum % number)
                                   + number;
  
    // last number which is divisible
    // by given number
    lastnum = (lastnum - lastnum % number);
  
    // total divisible number
    int count = ((lastnum - firstnum) /
                               number + 1);
  
    // return the total sum
    return ((lastnum + firstnum) * count) / 2;
}
  
int main()
{
    int n = 3, number = 7;
    cout << totalSumDivisibleByNum(n, number);
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Efficient Java program to find the sum
// divisible numbers.
import java.io.*;
  
class GFG {
      
    // find the Sum of having n digit and
    // divisible by the number
    static int totalSumDivisibleByNum(int digit, 
                                      int number)
    {
        // compute the first and last term
        int firstnum = (int)Math.pow(10, digit - 1);
        int lastnum = (int)Math.pow(10, digit);
      
        // first number which is divisible
        // by given number
        firstnum = (firstnum - firstnum % number)
                   + number;
      
        // last number which is divisible
        // by given number
        lastnum = (lastnum - lastnum % number);
      
        // total divisible number
        int count = ((lastnum - firstnum) /
                                number + 1);
      
        // return the total sum
        return ((lastnum + firstnum) * count) / 2;
    }
  
    // Driver code
    public static void main (String[] args) 
    {
        int n = 3, number = 7;
        System.out.println(totalSumDivisibleByNum(n, number));
    }
}
  
// This code is contributed by Ajit.

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Efficient Python3 program to  
# find the sum divisible numbers.
  
# find the Sum of having n digit 
# and divisible by the number
def totalSumDivisibleByNum(digit, number):
  
    # compute the first and last term
    firstnum = pow(10, digit - 1)
    lastnum = pow(10, digit)
  
    # first number which is divisible
    # by given number
    firstnum = (firstnum - firstnum % number) + number
  
    # last number which is divisible
    # by given number
    lastnum = (lastnum - lastnum % number)
  
    # total divisible number
    count = ((lastnum - firstnum) / number + 1)
  
    # return the total sum
    return int(((lastnum + firstnum) * count) / 2)
  
  
# Driver code
digit = 3; num = 7
print(totalSumDivisibleByNum(digit, num))
  
# This code is contributed by Smitha Dinesh Semwal

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// Efficient Java program to find the sum
// divisible numbers.
using System;
  
class GFG {
      
    // find the Sum of having n digit and
    // divisible by the number
    static int totalSumDivisibleByNum(int digit, 
                                    int number)
    {
          
        // compute the first and last term
        int firstnum = (int)Math.Pow(10, digit - 1);
        int lastnum = (int)Math.Pow(10, digit);
      
        // first number which is divisible
        // by given number
        firstnum = (firstnum - firstnum % number)
                + number;
      
        // last number which is divisible
        // by given number
        lastnum = (lastnum - lastnum % number);
      
        // total divisible number
        int count = ((lastnum - firstnum) /
                                number + 1);
      
        // return the total sum
        return ((lastnum + firstnum) * count) / 2;
    }
  
    // Driver code
    public static void Main () 
    {
        int n = 3, number = 7;
          
        Console.WriteLine(totalSumDivisibleByNum(n, number));
    }
}
  
// This code is contributed by vt_m.

chevron_right


PHP

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
// Efficient PHP program to find 
// the sum divisible numbers.
  
// find the Sum of having n digit and
// divisible by the number
function totalSumDivisibleByNum($digit
                                $number)
{
      
    // compute the first and last term
    $firstnum = pow(10, $digit - 1);
    $lastnum = pow(10, $digit);
  
    // first number which is divisible
    // by given number
    $firstnum = ($firstnum - $firstnum % $number)
                                       + $number;
  
    // last number which is divisible
    // by given number
    $lastnum = ($lastnum - $lastnum % $number);
  
    // total divisible number
    $count = (($lastnum - $firstnum) /
                          $number + 1);
  
    // return the total sum
    return (($lastnum + $firstnum) * 
                         $count) / 2;
}
  
    // Driver Code
    $n = 3; $number = 7;
    echo totalSumDivisibleByNum($n, $number);
  
// This code is contributed by anuj_67.
?>

chevron_right


Output:

70336


My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Improved By : jit_t, vt_m