Skip to content
Related Articles

Related Articles

Improve Article

Minimum count of elements required to obtain the given Array by repeated mirror operations

  • Last Updated : 01 Apr, 2021

Given an array arr[] consisting of N integers, the task is to find the array K[] of minimum possible length such that after performing multiple mirror operations on K[], the given array arr[] can be obtained.
 

Mirror Operation: Appending all the array elements to the original array in reverse order. 
Illustration: 
arr[] = {1, 2, 3} 
After 1st mirror operation, arr[] modifies to {1, 2, 3, 3, 2, 1} 
After 2nd mirror operation, arr[] modifies to {1, 2, 3, 3, 2, 1, 1, 2, 3, 3, 2, 1} 
 

Examples: 
 

Input: N = 6, arr[] = { 1, 2, 3, 3, 2, 1 } 
Output:
Explanation: 
Subarrays {1, 2, 3} and {3, 2, 1} are mirror images of each other. 
Single mirror operation on {1, 2, 3} obtains the given array. 
Therefore, the minimum number of elements required is 3.
Input: N = 8, arr[] = { 1, 2, 2, 1, 1, 2, 2, 1 } 
Output:
Explanation: 
Subarrays {1, 2, 2, 1} and {1, 2, 2, 1} are mirror images of each other. 
Subarray {1, 2} and {2, 1} are mirror images of each other. 
{1, 2} -> {1, 2, 2, 1} -> {1, 2, 2, 1, 1, 2, 2, 1} 
Therefore, the minimum number of elements required is 2. 
 

Naive Approach: 
The simplest approach to solve the problem is to generate all the possible subarrays from the given array of size less than equal to N/2 and, for each subarray, check if performing mirror operation gives the array arr[] or not. Print the minimum length subarray satisfying the condition. If no subarray is found to be satisfying, print No
Time Complexity: O(N3
Auxiliary Space: O(N)
Efficient Approach: 
The above approach can be further optimized using Divide and Conquer technique. Follow the steps below to solve the problem: 
 



  • Initialize a variable K = N and then, check whether the prefix of A[] of length K is a palindrome or not.
  • If the prefix of length K is a palindrome then divide K by 2 and perform the above checking.
  • If the prefix is not a palindrome then the answer is the current value of K.
  • Keep checking while K > 0 until K is odd.
  • If K is odd, then print the current value of K.

Below is the implementation of the above approach:
 

C++




// C++ Program to implement
// the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to find minimum number
// of elements required to form A[]
// by performing mirroring operation
int minimumrequired(int A[], int N)
{
    // Initialize K
    int K = N;
 
    int ans;
 
    while (K > 0) {
 
        // Odd length array
        // cannot be formed by
        // mirror operation
        if (K % 2 == 1) {
            ans = K;
            break;
        }
 
        bool ispalindrome = 1;
 
        // Check if prefix of
        // length K is palindrome
        for (int i = 0; i < K / 2; i++) {
 
            // Check if not a palindrome
            if (A[i] != A[K - 1 - i])
 
                ispalindrome = 0;
        }
 
        // If found to be palindrome
        if (ispalindrome) {
            ans = K / 2;
            K /= 2;
        }
 
        // Otherwise
        else {
            ans = K;
            break;
        }
    }
 
    // Return the final answer
    return ans;
}
 
// Driver Code
int main()
{
    int a[] = { 1, 2, 2, 1, 1, 2, 2, 1 };
    int N = sizeof a / sizeof a[0];
 
    cout << minimumrequired(a, N);
    return 0;
}

Java




// Java Program to implement
// the above approach
class GFG{
   
// Function to find minimum number
// of elements required to form A[]
// by performing mirroring operation
static int minimumrequired(int A[], int N)
{
    // Initialize K
    int K = N;
  
    int ans=0;
  
    while (K > 0)
    {
  
        // Odd length array
        // cannot be formed by
        // mirror operation
        if (K % 2 == 1)
        {
            ans = K;
            break;
        }
  
        int ispalindrome = 1;
  
        // Check if prefix of
        // length K is palindrome
        for (int i = 0; i < K / 2; i++)
        {
  
            // Check if not a palindrome
            if (A[i] != A[K - 1 - i])
  
                ispalindrome = 0;
        }
  
        // If found to be palindrome
        if (ispalindrome == 1)
        {
            ans = K / 2;
            K /= 2;
        }
  
        // Otherwise
        else
        {
            ans = K;
            break;
        }
    }
  
    // Return the final answer
    return ans;
}
  
// Driver Code
public static void main(String[] args)
{
    int a[] = { 1, 2, 2, 1, 1, 2, 2, 1 };
    int N = a.length;
  
    System.out.println(minimumrequired(a, N));
}
}
 
// This code is contributed by rock_cool

Python3




# Python3 program to implement
# the above approach
 
# Function to find minimum number
# of elements required to form A[]
# by performing mirroring operation
def minimumrequired(A, N):
     
    # Initialize K
    K = N
     
    while (K > 0):
         
        # Odd length array
        # cannot be formed by
        # mirror operation
        if (K % 2) == 1:
            ans = K
            break
         
        ispalindrome = 1
         
        # Check if prefix of
        # length K is palindrome
        for i in range(0, K // 2):
             
            # Check if not a palindrome
            if (A[i] != A[K - 1 - i]):
                ispalindrome = 0
                 
        # If found to be palindrome
        if (ispalindrome == 1):
            ans = K // 2
            K = K // 2
             
        # Otherwise
        else:
            ans = K
            break
     
    # Return the final answer
    return ans
 
# Driver code
A = [ 1, 2, 2, 1, 1, 2, 2, 1 ]
N = len(A)
 
print(minimumrequired(A, N))
         
# This code is contributed by VirusBuddah_

C#




// C# program to implement
// the above approach
using System;
 
class GFG{
 
// Function to find minimum number
// of elements required to form []A
// by performing mirroring operation
static int minimumrequired(int[] A, int N)
{
     
    // Initialize K
    int K = N;
 
    int ans = 0;
 
    while (K > 0)
    {
 
        // Odd length array
        // cannot be formed by
        // mirror operation
        if (K % 2 == 1)
        {
            ans = K;
            break;
        }
 
        int ispalindrome = 1;
 
        // Check if prefix of
        // length K is palindrome
        for(int i = 0; i < K / 2; i++)
        {
 
            // Check if not a palindrome
            if (A[i] != A[K - 1 - i])
                ispalindrome = 0;
        }
 
        // If found to be palindrome
        if (ispalindrome == 1)
        {
            ans = K / 2;
            K /= 2;
        }
 
        // Otherwise
        else
        {
            ans = K;
            break;
        }
    }
 
    // Return the readonly answer
    return ans;
}
 
// Driver Code
public static void Main(String[] args)
{
    int[] a = { 1, 2, 2, 1, 1, 2, 2, 1 };
    int N = a.Length;
 
    Console.WriteLine(minimumrequired(a, N));
}
}
 
// This code is contributed by amal kumar choubey

Javascript




<script>
    // Javascript Program to implement
    // the above approach
     
    // Function to find minimum number
    // of elements required to form A[]
    // by performing mirroring operation
    function minimumrequired(A, N)
    {
        // Initialize K
        let K = N;
 
        let ans;
 
        while (K > 0) {
 
            // Odd length array
            // cannot be formed by
            // mirror operation
            if (K % 2 == 1) {
                ans = K;
                break;
            }
 
            let ispalindrome = true;
 
            // Check if prefix of
            // length K is palindrome
            for (let i = 0; i < parseInt(K / 2, 10); i++) {
 
                // Check if not a palindrome
                if (A[i] != A[K - 1 - i])
 
                    ispalindrome = false;
            }
 
            // If found to be palindrome
            if (ispalindrome) {
                ans = parseInt(K / 2, 10);
                K = parseInt(K / 2, 10);
            }
 
            // Otherwise
            else {
                ans = K;
                break;
            }
        }
 
        // Return the final answer
        return ans;
    }
 
    let a = [ 1, 2, 2, 1, 1, 2, 2, 1 ];
    let N = a.length;
   
    document.write(minimumrequired(a, N));
     
    // This code is contributed by divyeshrabadiya07.
</script>
Output: 
2

 

Time Complexity: O(N*log N) 
Auxiliary Space: O(N)
 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.




My Personal Notes arrow_drop_up
Recommended Articles
Page :