Related Articles

# Minimize sum of absolute difference between all pairs of array elements by decrementing and incrementing pairs by 1

• Difficulty Level : Easy
• Last Updated : 06 Aug, 2021

Given an array arr[] ( 1-based indexing ) consisting of N integers, the task is to find the minimum sum of the absolute difference between all pairs of array elements by decrementing and incrementing any pair of elements by 1 any number of times.

Examples:

Input: arr[] = {1, 2, 3}
Output: 0
Explanation:
Modify the array elements by  performing the following operations:

• Choose the pairs of element (arr, arr) and incrementing and decrementing the pairs modifies the array to {2, 2, 2}.

After the above operations, the sum of the absolute differences is  |2 – 2| + |2 – 2| + |2 – 2| = 0. Therefore, print 0.

Input: arr[] = {0, 1, 0, 1}
Output: 4

Approach: The given problem can be solved by using a Greedy Approach. It can be observed that to minimize the sum of the absolute difference between every pair of array elements arr[], the idea to make every array element closed to each other. Follow the steps below to solve the problem:

• Find the sum of the array elements arr[] and store it in a variable, say sum.
• Now, if the value of sum % N is 0, then print 0 as all the array elements can be made equal and the resultant value of the expression is always 0. Otherwise, find the value of sum % N and store it in a variable, say R.
• Now, if all the array elements are sum/N, then we can make R number of array elements as 1 and the rest of the array elements as 0 to minimize the resultant value.
• After the above steps, the minimum sum of the absolute difference is given by R*(N – R).

Below is the implementation of the above approach:

## C++

 `// C++ program for the above approach``#include ``using` `namespace` `std;` `// Function to find the minimum value``// of the sum of absolute difference``// between all pairs of arrays``int` `minSumDifference(``int` `ar[], ``int` `n)``{``    ``// Stores the sum of array elements``    ``int` `sum = 0;` `    ``// Find the sum of array element``    ``for` `(``int` `i = 0; i < n; i++)``        ``sum += ar[i];` `    ``// Store the value of sum%N``    ``int` `rem = sum % n;` `    ``// Return the resultant value``    ``return` `rem * (n - rem);``}` `// Driver Code``int` `main()``{``    ``int` `arr[] = { 3, 6, 8, 5, 2,``                  ``1, 11, 7, 10, 4 };``    ``int` `N = ``sizeof``(arr) / ``sizeof``(``int``);``    ``cout << minSumDifference(arr, N);` `    ``return` `0;``}`

## Java

 `// Java program for the above approach``class` `GFG {` `    ``// Function to find the minimum value``    ``// of the sum of absolute difference``    ``// between all pairs of arrays``    ``public` `static` `int` `minSumDifference(``int` `ar[], ``int` `n) {``        ``// Stores the sum of array elements``        ``int` `sum = ``0``;` `        ``// Find the sum of array element``        ``for` `(``int` `i = ``0``; i < n; i++)``            ``sum += ar[i];` `        ``// Store the value of sum%N``        ``int` `rem = sum % n;` `        ``// Return the resultant value``        ``return` `rem * (n - rem);``    ``}` `    ``// Driver Code``    ``public` `static` `void` `main(String args[]) {``        ``int``[] arr = { ``3``, ``6``, ``8``, ``5``, ``2``, ``1``, ``11``, ``7``, ``10``, ``4` `};``        ``int` `N = arr.length;``        ``System.out.println(minSumDifference(arr, N));` `    ``}``}` `// This code is contributed by gfgking.`

## Python3

 `# Python 3 program for the above approach` `# Function to find the minimum value``# of the sum of absolute difference``# between all pairs of arrays``def` `minSumDifference(ar, n):``    ``# Stores the sum of array elements``    ``sum` `=` `0` `    ``# Find the sum of array element``    ``for` `i ``in` `range``(n):``        ``sum` `+``=` `ar[i]` `    ``# Store the value of sum%N``    ``rem ``=` `sum` `%` `n` `    ``# Return the resultant value``    ``return` `rem ``*` `(n ``-` `rem)` `# Driver Code``if` `__name__ ``=``=` `'__main__'``:``    ``arr ``=` `[``3``, ``6``, ``8``, ``5``, ``2``, ``1``, ``11``, ``7``, ``10``, ``4``]``    ``N ``=` `len``(arr)``    ``print``(minSumDifference(arr, N))``    ` `    ``# This code is contributed by ipg2016107.`

## C#

 `// C# program for the above approach``using` `System;` `class` `GFG{` `// Function to find the minimum value``// of the sum of absolute difference``// between all pairs of arrays``public` `static` `int` `minSumDifference(``int``[] ar, ``int` `n)``{``    ` `    ``// Stores the sum of array elements``    ``int` `sum = 0;` `    ``// Find the sum of array element``    ``for``(``int` `i = 0; i < n; i++)``        ``sum += ar[i];` `    ``// Store the value of sum%N``    ``int` `rem = sum % n;` `    ``// Return the resultant value``    ``return` `rem * (n - rem);``}` `// Driver Code``public` `static` `void` `Main()``{``    ``int``[] arr = { 3, 6, 8, 5, 2,``                  ``1, 11, 7, 10, 4 };``    ``int` `N = arr.Length;``    ` `    ``Console.Write(minSumDifference(arr, N));``}``}` `// This code is contributed by sanjoy_62`

## Javascript

 ``
Output:
`21`

Time  Complexity: O(N)
Auxiliary Space: O(1)

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.

My Personal Notes arrow_drop_up