Open In App
Related Articles

Convert A into B by incrementing or decrementing 1, 2, or 5 any number of times

Improve Article
Improve
Save Article
Save
Like Article
Like

Given two integers A and B, the task is to find the minimum number of moves needed to make A equal to B by incrementing or decrementing the A by either 1, 2, or 5 any number of times.

Examples:

Input: A = 4, B = 0
Output: 2
Explanation:
Perform the operation as follows:

  1. Decreasing the value of A by 2, modifies the value of A to (4 – 2) = 2.
  2. Decreasing the value of A by 2 modifies the value of A to (2 – 2) = 0. Which is equal to B.

Therefore, the number of moves required is 2.

Input: A = 3, B = 9
Output: 2

Approach: The given problem can be solved by using the Greedy Approach. The idea is to first find the increment or decrements of 5, then 2, and then 1 is needed to convert A to B. Follow the steps below to solve the problem: 

  • Update the value of A as the absolute difference between A and B.
  • Now, print the value of (A/5) + (A%5)/2 + (A%5)%2 as the minimum number of increments or decrements of 1, 2, or 5 to convert A into B.

Below is the implementation of the above approach:

C++




// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to find minimum number of
// moves required to convert A into B
int minimumSteps(int a, int b)
{
    // Stores the minimum number of
    // moves required
    int cnt = 0;
 
    // Stores the absolute
    // difference
    a = abs(a - b);
 
    // FInd the number of moves
    cnt = (a / 5) + (a % 5) / 2 + (a % 5) % 2;
 
    // Return cnt
    return cnt;
}
 
// Driver Code
int main()
{
    // Input
    int A = 3, B = 9;
    // Function call
    cout << minimumSteps(A, B);
    return 0;
}


Java




// Java program for the above approach
import java.io.*;
 
class GFG
{
   
    // Function to find minimum number of
    // moves required to convert A into B
    static int minimumSteps(int a, int b)
    {
       
        // Stores the minimum number of
        // moves required
        int cnt = 0;
 
        // Stores the absolute
        // difference
        a = Math.abs(a - b);
 
        // FInd the number of moves
        cnt = (a / 5) + (a % 5) / 2 + (a % 5) % 2;
 
        // Return cnt
        return cnt;
    }
 
    // Driver Code
    public static void main(String[] args)
    {
        // Input
        int A = 3, B = 9;
        // Function call
        System.out.println(minimumSteps(A, B));
    }
}
 
 // This code is contributed by Potta Lokesh


Python3




# python program for the above approach
 
# Function to find minimum number of
# moves required to convert A into B
def minimumSteps(a, b):
   
    # Stores the minimum number of
    # moves required
    cnt = 0
 
    # Stores the absolute
    # difference
    a = abs(a - b)
 
    # FInd the number of moves
    cnt = (a//5) + (a % 5)//2 + (a % 5) % 2
     
    # Return cnt
    return cnt
 
 
# Driver Code
# Input
A = 3
B = 9
 
# Function call
print(minimumSteps(A, B))
 
# This code is contributed by amreshkumar3.


C#




// C# program for the above approach
using System;
using System.Collections.Generic;
 
class GFG{
 
// Function to find minimum number of
// moves required to convert A into B
static int minimumSteps(int a, int b)
{
     
    // Stores the minimum number of
    // moves required
    int cnt = 0;
 
    // Stores the absolute
    // difference
    a = Math.Abs(a - b);
 
    // FInd the number of moves
    cnt = (a / 5) + (a % 5) / 2 + (a % 5) % 2;
 
    // Return cnt
    return cnt;
}
 
// Driver Code
public static void Main()
{
     
    // Input
    int A = 3, B = 9;
     
    // Function call
    Console.Write(minimumSteps(A, B));
}
}
 
// This code is contributed by SURENDRA_GANGWAR


Javascript




<script>
        // JavaScript program for the above approach
 
        // Function to find minimum number of
        // moves required to convert A into B
        function minimumSteps(a, b)
        {
         
            // Stores the minimum number of
            // moves required
            let cnt = 0;
 
            // Stores the absolute
            // difference
            a = Math.abs(a - b);
 
            // FInd the number of moves
            cnt = Math.floor(a / 5) + Math.floor((a % 5) / 2) + (a % 5) % 2;
 
            // Return cnt
            return cnt;
        }
 
        // Driver Code
 
        // Input
        let A = 3, B = 9;
        // Function call
        document.write(minimumSteps(A, B));
 
 
    // This code is contributed by Potta Lokesh
 
    </script>


Output

2

Time Complexity: O(1)
Auxiliary Space: O(1)

 


Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!

Last Updated : 23 Aug, 2021
Like Article
Save Article
Previous
Next
Similar Reads
Complete Tutorials