Open In App
Related Articles

Minimize product of first N – 1 natural numbers by swapping same positioned bits of pairs

Improve Article
Improve
Save Article
Save
Like Article
Like

Given an integer N, the task is to find the minimum positive product of first N – 1 natural numbers, i.e. [1, (N – 1)], by swapping any ith bit of any two numbers any number of times.

Note: N is always a perfect power of 2. Since the product can be very large, print the answer modulo 109 + 7.

Examples:

Input: N = 4
Output: 6
Explanation:
No swapping of bits is required. Therefore, the minimum product is 1*2*3 = 6.

Input: N = 8
Output: 1512
Explanation:
Let the array arr[] stores all the value from 1 to N as {1, 2, 3, 4, 5, 6, 7}
Follow the below steps:
Step 1: In elements 2 = (0010) and 5 = (0101), swap 0th and 1st bit. Therefore, replace 2 with 1 and 5 with 6. arr[] = {1, 1, 3, 4, 6, 6, 7}.
Step 2: In elements 3 = (0011) and 4 = (0100), swap 1th bit. Therefore, replace 3 with 1 and 4 with 6. arr[] = {1, 1, 1, 6, 6, 6, 7}.
Hence, the minimum product = 1*1*1*6*6*6*7 = 1512 % 1e9+7 = 1512.

Approach: The idea is to make some observations. For example, if N = 8 and arr[] = {1, 2, 3, 4, 5, 6, 7}, observe that for the product to be minimum there must be three sixes i.e., there must be an element having value (N – 2) with the frequency of occurrence as (1 + (N – 4)/2) and there must be three ones i.e., there must be (1 + (N – 4)/2) ones. And at last multiply the current product with (N – 1). Hence, the formula becomes:

Minimum product for any value N = ((N – 1) * (N – 2)(N – 4)/2 + 1) % 1e9 + 7 

Follow the below steps to solve the problem:

  1. Initialize the ans as 1.
  2. Iterate over the range [0, 1 + (N – 4)/2].
  3. In each traversal, multiply ans with N – 2 and update the ans to ans mod 1e9+7.
  4. After the above steps, print the value of ans*(N – 1) mod 1e9+7 as the result.

Below is the implementation of the above approach:

C++




// C++ program for the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
int mod = 1e9 + 7;
 
// Function to find the minimum product
// of 1 to N - 1 after performing the
// given operations
void minProduct(int n)
{
    // Initialize ans with 1
    int ans = 1;
 
    // Multiply ans with N-2
    // ((N - 4)/2) times
    for (int i = 1;
         i <= (n - 4) / 2; i++) {
        ans = (1LL * ans
               * (n - 2))
              % mod;
    }
 
    // Multiply ans with N - 1
    // and N - 2 once
    ans = (1LL * ans
           * (n - 2) * (n - 1))
          % mod;
 
    // Print ans
    cout << ans << endl;
}
 
// Driver Code
int main()
{
    // Given Number N
    int N = 8;
 
    // Function Call
    minProduct(N);
 
    return 0;
}


Java




// Java program for the
// above approach
import java.util.*;
class GFG{
 
static int mod = (int)1e9 + 7;
 
// Function to find the
// minimum product of 1
// to N - 1 after performing
// the given operations
static void minProduct(int n)
{
  // Initialize ans with 1
  int ans = 1;
 
  // Multiply ans with N-2
  // ((N - 4)/2) times
  for (int i = 1;
           i <= (n - 4) / 2; i++)
  {
    ans = (int)(1L * ans *
               (n - 2)) % mod;
  }
 
  // Multiply ans with N - 1
  // and N - 2 once
  ans = (int)(1L * ans *
             (n - 2) * (n - 1)) % mod;
 
  // Print ans
  System.out.print(ans + "\n");
}
 
// Driver Code
public static void main(String[] args)
{
  // Given Number N
  int N = 8;
 
  // Function Call
  minProduct(N);
}
}
 
// This code is contributed by gauravrajput1


Python3




# Python3 program for the above approach
mod = 1e9 + 7
 
# Function to find the minimum product
# of 1 to N - 1 after performing the
# given operations
def minProduct(n):
     
    # Initialize ans with 1
    ans = 1
 
    # Multiply ans with N-2
    # ((N - 4)/2) times
    for i in range(1, (n - 4) // 2 + 1):
        ans = (ans * (n - 2)) % mod
 
    # Multiply ans with N - 1
    # and N - 2 once
    ans = (ans * (n - 2) * (n - 1)) % mod
 
    # Print ans
    print(int(ans))
 
# Driver Code
if __name__ == '__main__':
     
    # Given number N
    N = 8
 
    # Function call
    minProduct(N)
 
# This code is contributed by mohit kumar 29


C#




// C# program for the
// above approach
using System;
class GFG{
 
static int mod = (int)1e9 + 7;
 
// Function to find the
// minimum product of 1
// to N - 1 after performing
// the given operations
static void minProduct(int n)
{
  // Initialize ans with 1
  int ans = 1;
 
  // Multiply ans with N-2
  // ((N - 4)/2) times
  for (int i = 1;
           i <= (n - 4) / 2; i++)
  {
    ans = (int)(1L * ans *
               (n - 2)) % mod;
  }
 
  // Multiply ans with N - 1
  // and N - 2 once
  ans = (int)(1L * ans *
             (n - 2) *
             (n - 1)) % mod;
 
  // Print ans
  Console.Write(ans + "\n");
}
 
// Driver Code
public static void Main(String[] args)
{
  // Given Number N
  int N = 8;
 
  // Function Call
  minProduct(N);
}
}
 
// This code is contributed by Rajput-Ji


Javascript




<script>
// JavaScript program for the above approach
 
let mod = 1e9 + 7;
 
// Function to find the minimum product
// of 1 to N - 1 after performing the
// given operations
function minProduct(n)
{
    // Initialize ans with 1
    let ans = 1;
 
    // Multiply ans with N-2
    // ((N - 4)/2) times
    for (let i = 1; i <= Math.floor((n - 4) / 2); i++)
    {
        ans = (1 * ans * (n - 2)) % mod;
    }
 
    // Multiply ans with N - 1
    // and N - 2 once
    ans = (1 * ans * (n - 2) * (n - 1)) % mod;
 
    // Print ans
    document.write(ans + "<br>");
}
 
// Driver Code
 
    // Given Number N
    let N = 8;
 
    // Function Call
    minProduct(N);
 
// This code is contributed by Manoj.
</script>


Output

1512

Time Complexity: O(N) where N is the given integer.
Auxiliary Space: O(1)


Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!

Last Updated : 12 Apr, 2021
Like Article
Save Article
Previous
Next
Similar Reads
Complete Tutorials