Minimize array elements required to be incremented or decremented to convert given array into a Fibonacci Series
Given an array arr[], the task is to find the minimum number increments or decrements by 1 required to convert the array into a Fibonacci Series. If it is not possible, then print -1.
Note: Each array element can be incremented or decremented only once.
Examples:
Input: arr[] = {4, 8, 9, 17, 21}
Output: 3
Explanation:
The array can be converted into a Fibonacci Series in three moves:
Convert 4 to 3, arr[] = {3, 8, 9, 17, 21}
Convert 8 to 7, arr[] = {3, 7, 9, 17, 21}
Convert 9 to 10, arr[] = {3, 7, 10, 17, 21}Input: arr[] = {3, 8, 7, 2}
Output: -1
Explanation:
The given array cannot be converted into a Fibonacci Series.
Approach: The idea to solve the problem is to use the fact that the first two elements of a Fibonacci Series are enough to calculate the common difference of the Fibonacci Series and hence the subsequent elements. So check all permutations of operations on the first two numbers and calculate the minimum moves to convert the rest of the elements into Fibonacci Series.
Follow the steps below to implement the above approach:
- If the number of elements in the array is less than 3, then it’s already a Fibonacci series.
- Otherwise, try all permutations of the first two elements:
- For each permutation, calculate the number of operations for the rest of the elements of the array:
- If it’s not possible to change the element in at most one operation, then the array cannot be converted into a Fibonacci Series.
- Otherwise, update the required number of operations.
- Update the answer with the number of operations.
- For each permutation, calculate the number of operations for the rest of the elements of the array:
- Return the answer.
Below is the implementation of our approach:
C++
// C++ program for the above approach #include <bits/stdc++.h> using namespace std; // Function to calculate minimum // number of moves to make the // sequence a Fibonacci series int minMoves(vector< int > arr) { int N = arr.size(); // If number of elements // is less than 3 if (N <= 2) return 0; // Initialize the value // of the result int ans = INT_MAX; // Try all permutations of // the first two elements for ( int i = -1; i <= 1; i++) { for ( int j = -1; j <= 1; j++) { // Value of first element // after operation int num1 = arr[0] + i; // Value of second element // after operation int num2 = arr[1] + j; int flag = 1; int moves = abs (i) + abs (j); // Calculate number of moves // for rest of the elements // of the array for ( int idx = 2; idx < N; idx++) { // Element at idx index int num = num1 + num2; // If it is not possible // to change the element // in atmost one move if ( abs (arr[idx] - num) > 1) flag = 0; // Otherwise else moves += abs (arr[idx] - num); num1 = num2; num2 = num; } // Update the answer if (flag) ans = min(ans, moves); } } // Return the answer if (ans == INT_MAX) return -1; return ans; } // Driver Code int main() { vector< int > arr = { 4, 8, 9, 17, 27 }; cout << minMoves(arr) << endl; return 0; } |
Java
// Java program for the above approach import java.util.*; class GFG{ // Function to calculate minimum // number of moves to make the // sequence a Fibonacci series static int minMoves( int []arr) { int N = arr.length; // If number of elements // is less than 3 if (N <= 2 ) return 0 ; // Initialize the value // of the result int ans = Integer.MAX_VALUE; // Try all permutations of // the first two elements for ( int i = - 1 ; i <= 1 ; i++) { for ( int j = - 1 ; j <= 1 ; j++) { // Value of first element // after operation int num1 = arr[ 0 ] + i; // Value of second element // after operation int num2 = arr[ 1 ] + j; int flag = 1 ; int moves = Math.abs(i) + Math.abs(j); // Calculate number of moves // for rest of the elements // of the array for ( int idx = 2 ; idx < N; idx++) { // Element at idx index int num = num1 + num2; // If it is not possible // to change the element // in atmost one move if (Math.abs(arr[idx] - num) > 1 ) flag = 0 ; // Otherwise else moves += Math.abs(arr[idx] - num); num1 = num2; num2 = num; } // Update the answer if (flag > 0 ) ans = Math.min(ans, moves); } } // Return the answer if (ans == Integer.MAX_VALUE) return - 1 ; return ans; } // Driver Code public static void main(String[] args) { int []arr = { 4 , 8 , 9 , 17 , 27 }; System.out.print(minMoves(arr)); } } // This code is contributed by 29AjayKumar |
Python3
# Python3 program for the above approach import sys # Function to calculate minimum # number of moves to make the # sequence a Fibonacci series def minMoves(arr): N = len (arr) # If number of elements # is less than 3 if (N < = 2 ): return 0 # Initialize the value # of the result ans = sys.maxsize # Try all permutations of # the first two elements for i in range ( - 1 , 2 ): for j in range ( - 1 , 2 ): # Value of first element # after operation num1 = arr[ 0 ] + i # Value of second element # after operation num2 = arr[ 1 ] + j flag = 1 moves = abs (i) + abs (j) # Calculate number of moves # for rest of the elements # of the array for idx in range ( 2 , N): # Element at idx index num = num1 + num2 # If it is not possible # to change the element # in atmost one move if ( abs (arr[idx] - num) > 1 ): flag = 0 # Otherwise else : moves + = abs (arr[idx] - num) num1 = num2 num2 = num # Update the answer if (flag): ans = min (ans, moves) # Return the answer if (ans = = sys.maxsize): return - 1 return ans # Driver Code if __name__ = = "__main__" : arr = [ 4 , 8 , 9 , 17 , 27 ] print (minMoves(arr)) # This code is contributed by chitranayal |
C#
// C# program for the above approach using System; using System.Collections.Generic; // Function to calculate minimum // number of moves to make the // sequence a Fibonacci series class GFG{ static int minMoves(List< int > arr) { int N = arr.Count; // If number of elements // is less than 3 if (N <= 2) return 0; // Initialize the value // of the result int ans = Int32.MaxValue; // Try all permutations of // the first two elements for ( int i = -1; i <= 1; i++) { for ( int j = -1; j <= 1; j++) { // Value of first element // after operation int num1 = arr[0] + i; // Value of second element // after operation int num2 = arr[1] + j; int flag = 1; int moves = Math.Abs(i) + Math.Abs(j); // Calculate number of moves // for rest of the elements // of the array for ( int idx = 2; idx < N; idx++) { // Element at idx index int num = num1 + num2; // If it is not possible // to change the element // in atmost one move if (Math.Abs(arr[idx] - num) > 1) flag = 0; // Otherwise else moves += Math.Abs(arr[idx] - num); num1 = num2; num2 = num; } // Update the answer if (flag != 0) ans = Math.Min(ans, moves); } } // Return the answer if (ans == Int32.MaxValue) return -1; return ans; } // Driver Code public static void Main() { List< int > arr = new List< int >(){ 4, 8, 9, 17, 27 }; Console.WriteLine(minMoves(arr)); } } // This code is contributed by SURENDRA_GANGWAR |
Javascript
<script> // javascript program of the above approach // Function to calculate minimum // number of moves to make the // sequence a Fibonacci series function minMoves(arr) { let N = arr.length; // If number of elements // is less than 3 if (N <= 2) return 0; // Initialize the value // of the result let ans = Number.MAX_VALUE; // Try all permutations of // the first two elements for (let i = -1; i <= 1; i++) { for (let j = -1; j <= 1; j++) { // Value of first element // after operation let num1 = arr[0] + i; // Value of second element // after operation let num2 = arr[1] + j; let flag = 1; let moves = Math.abs(i) + Math.abs(j); // Calculate number of moves // for rest of the elements // of the array for (let idx = 2; idx < N; idx++) { // Element at idx index let num = num1 + num2; // If it is not possible // to change the element // in atmost one move if (Math.abs(arr[idx] - num) > 1) flag = 0; // Otherwise else moves += Math.abs(arr[idx] - num); num1 = num2; num2 = num; } // Update the answer if (flag > 0) ans = Math.min(ans, moves); } } // Return the answer if (ans == Number.MAX_VALUE) return -1; return ans; } // Driver Code let arr = [ 4, 8, 9, 17, 27 ]; document.write(minMoves(arr)); // This code is contributed by chinmoy1997pal. </script> |
3
Time Complexity: O(N)
Auxiliary Space: O(1)
Please Login to comment...