Open In App
Related Articles

Minimize adding odd and subtracting even numbers to make all array elements equal to K

Improve Article
Improve
Save Article
Save
Like Article
Like

Given an array, arr[] of size N and an integer K, the task is to find the minimum number of operations required to make all array elements equal to K by performing the following operations any number of times:

  • Convert arr[i] to arr[i] + X, where X is an odd number.
  • Convert arr[i] to arr[i] – Y, where Y is an even number.

Examples:

Input: arr[] = {8, 7, 2, 1, 3}, K = 5 
Output:
Explanation: To make all elements of the given array equal to K(= 5), following operations are required: 
arr[0] = arr[0] + X, X = 1 
arr[0] = arr[0] – Y, Y = 4 
arr[1] = arr[1] – Y, Y = 2 
arr[2] = arr[2] + X, X = 3 
arr[3] = arr[3] + X, X = 3 
arr[3] = arr[3] + X, X = 1 
arr[4] = arr[4] + X, X = 1 
arr[4] = arr[4] + X, X = 1

Input: arr[] = {1, 2, 3, 4, 5, 6, 7}, K = 3 
Output:
 

Approach: The problem can be solved using the Greedy technique. Following are the observations:

Even + Even = Even 
Even + Odd = Odd 
Odd + Odd = Even 
Odd + Even = Odd 

Follow the steps below to solve the problem:

  • Traverse the given array and check the following conditions. 
    • If K > arr[i] and (K – arr[i]) % 2 == 0 then add two odd numbers(X) into arr[i]. Therefore, total 2 operations required.
    • If K > arr[i] and (K – arr[i]) % 2 != 0 then add one odd numbers(X) into arr[i]. Therefore, total 1 operations required.
    • If K < arr[i] and (arr[i] – arr[i]) % 2 == 0 then subtract one even numbers(Y) into arr[i]. Therefore, total 1 operations required.
    • If K < arr[i] and (K – arr[i]) % 2 != 0 then add an odd numbers(X) into arr[i] and subtract an even numbers(Y) from arr[i]. Therefore, total 2 operations required.
  • Finally, print the total number of operations required to make all the array elements equal to K.

Below is the implementation of the above approach

C++




// C++ program to implement
// the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the minimum operations
// required to make array elements equal to K
int MinOperation(int arr[], int N, int K)
{
    // Stores minimum count of operations
    int cntOpe = 0;
 
    // Traverse the given array
    for (int i = 0; i < N; i++) {
 
        // If K is greater than arr[i]
        if (K > arr[i]) {
 
            // If (K - arr[i]) is even
            if ((K - arr[i]) % 2 == 0) {
 
                // Update cntOpe
                cntOpe += 2;
            }
            else {
 
                // Update cntOpe
                cntOpe += 1;
            }
        }
 
        // If K is less than arr[i]
        else if (K < arr[i]) {
 
            // If (arr[i] - K) is even
            if ((K - arr[i]) % 2 == 0) {
 
                // Update cntOpe
                cntOpe += 1;
            }
            else {
 
                // Update cntOpe
                cntOpe += 2;
            }
        }
    }
 
    return cntOpe;
}
 
// Driver Code
int main()
{
    int arr[] = { 8, 7, 2, 1, 3 };
    int K = 5;
    int N = sizeof(arr) / sizeof(arr[0]);
    cout << MinOperation(arr, N, K);
 
    return 0;
}


Java




// Java program to implement
// the above approach
class GFG{
     
// Function to find the minimum
// operations required to make
// array elements equal to K
public static int MinOperation(int arr[],
                               int N, int K)
{
  // Stores minimum count of
  // operations
  int cntOpe = 0;
 
  // Traverse the given array
  for (int i = 0; i < N; i++)
  {
    // If K is greater than
    // arr[i]
    if (K > arr[i])
    {
      // If (K - arr[i]) is even
      if ((K - arr[i]) % 2 == 0)
      {
        // Update cntOpe
        cntOpe += 2;
      }
      else
      {
        // Update cntOpe
        cntOpe += 1;
      }
    }
 
    // If K is less than
    // arr[i]
    else if (K < arr[i])
    {
      // If (arr[i] - K) is
      // even
      if ((K - arr[i]) % 2 == 0)
      {
        // Update cntOpe
        cntOpe += 1;
      }
      else
      {
        // Update cntOpe
        cntOpe += 2;
      }
    }
  }
 
  return cntOpe;
}
 
// Driver code
public static void main(String[] args)
{
  int arr[] = {8, 7, 2, 1, 3};
  int K = 5;
  int N = arr.length;
  System.out.println(
  MinOperation(arr, N, K));
}
}
 
// This code is contributed by divyeshrabadiya07


Python3




# Python3 program to implement
# the above approach
  
# Function to find the minimum operations
# required to make array elements equal to K
def MinOperation(arr, N, K):
     
    # Stores minimum count of operations
    cntOpe = 0
  
    # Traverse the given array
    for i in range(N):
  
        # If K is greater than arr[i]
        if (K > arr[i]):
  
            # If (K - arr[i]) is even
            if ((K - arr[i]) % 2 == 0):
  
                # Update cntOpe
                cntOpe += 2
             
            else:
  
                # Update cntOpe
                cntOpe += 1
             
        # If K is less than arr[i]
        elif (K < arr[i]):
             
            # If (arr[i] - K) is even
            if ((K - arr[i]) % 2 == 0):
  
                # Update cntOpe
                cntOpe += 1
             
            else:
  
                # Update cntOpe
                cntOpe += 2
 
    return cntOpe
 
# Driver Code
arr = [ 8, 7, 2, 1, 3 ]
K = 5
N = len(arr)
 
print(MinOperation(arr, N, K))
 
# This code is contributed by sanjoy_62


C#




// C# program to implement
// the above approach
using System;
 
class GFG{
     
// Function to find the minimum
// operations required to make
// array elements equal to K
public static int MinOperation(int []arr,
                               int N, int K)
{
   
  // Stores minimum count of
  // operations
  int cntOpe = 0;
 
  // Traverse the given array
  for(int i = 0; i < N; i++)
  {
     
    // If K is greater than
    // arr[i]
    if (K > arr[i])
    {
       
      // If (K - arr[i]) is even
      if ((K - arr[i]) % 2 == 0)
      {
         
        // Update cntOpe
        cntOpe += 2;
      }
      else
      {
         
        // Update cntOpe
        cntOpe += 1;
      }
    }
 
    // If K is less than
    // arr[i]
    else if (K < arr[i])
    {
       
      // If (arr[i] - K) is
      // even
      if ((K - arr[i]) % 2 == 0)
      {
         
        // Update cntOpe
        cntOpe += 1;
      }
      else
      {
         
        // Update cntOpe
        cntOpe += 2;
      }
    }
  }
  return cntOpe;
}
 
// Driver code
public static void Main(String[] args)
{
  int []arr = {8, 7, 2, 1, 3};
  int K = 5;
  int N = arr.Length;
   
  Console.WriteLine(
  MinOperation(arr, N, K));
}
}
 
// This code is contributed by Amit Katiyar


Javascript




<script>
// Javascript program to implement
// the above approach
 
// Function to find the minimum
// operations required to make
// array elements equal to K
function MinOperation(arr, N, K)
{
  // Stores minimum count of
  // operations
  let cntOpe = 0;
  
  // Traverse the given array
  for (let i = 0; i < N; i++)
  {
    // If K is greater than
    // arr[i]
    if (K > arr[i])
    {
      // If (K - arr[i]) is even
      if ((K - arr[i]) % 2 == 0)
      {
        // Update cntOpe
        cntOpe += 2;
      }
      else
      {
        // Update cntOpe
        cntOpe += 1;
      }
    }
  
    // If K is less than
    // arr[i]
    else if (K < arr[i])
    {
      // If (arr[i] - K) is
      // even
      if ((K - arr[i]) % 2 == 0)
      {
        // Update cntOpe
        cntOpe += 1;
      }
      else
      {
        // Update cntOpe
        cntOpe += 2;
      }
    }
  }
  
  return cntOpe;
}
 
    // Driver Code
     
    let arr = [8, 7, 2, 1, 3];
  let K = 5;
  let N = arr.length;
  document.write(
  MinOperation(arr, N, K));
      
</script>


Output: 

8

 

Time Complexity: O(N)
Auxiliary Space: O(1)


Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!

Last Updated : 26 Apr, 2021
Like Article
Save Article
Previous
Next
Similar Reads
Complete Tutorials