# Minimize adding odd and subtracting even numbers to make all array elements equal to K

Given an array, arr[] of size N and an integer K, the task is to find the minimum number of operations required to make all array elements equal to K by performing the following operations any number of times:

• Convert arr[i] to arr[i] + X, where X is an odd number.
• Convert arr[i] to arr[i] – Y, where Y is an even number.

Examples:

Input: arr[] = {8, 7, 2, 1, 3}, K = 5
Output:
Explanation: To make all elements of the given array equal to K(= 5), following operations are required:
arr[0] = arr[0] + X, X = 1
arr[0] = arr[0] – Y, Y = 4
arr[1] = arr[1] – Y, Y = 2
arr[2] = arr[2] + X, X = 3
arr[3] = arr[3] + X, X = 3
arr[3] = arr[3] + X, X = 1
arr[4] = arr[4] + X, X = 1
arr[4] = arr[4] + X, X = 1

Input: arr[] = {1, 2, 3, 4, 5, 6, 7}, K = 3
Output:

Approach: The problem can be solved using the Greedy technique. Following are the observations:

Even + Even = Even
Even + Odd = Odd
Odd + Odd = Even
Odd + Even = Odd

Follow the steps below to solve the problem:

• Traverse the given array and check the following conditions.
• If K > arr[i] and (K – arr[i]) % 2 == 0 then add two odd numbers(X) into arr[i]. Therefore, total 2 operations required.
• If K > arr[i] and (K – arr[i]) % 2 != 0 then add one odd numbers(X) into arr[i]. Therefore, total 1 operations required.
• If K < arr[i] and (arr[i] – arr[i]) % 2 == 0 then subtract one even numbers(Y) into arr[i]. Therefore, total 1 operations required.
• If K < arr[i] and (K – arr[i]) % 2 != 0 then add an odd numbers(X) into arr[i] and subtract an even numbers(Y) from arr[i]. Therefore, total 2 operations required.
• Finally, print the total number of operations required to make all the array elements equal to K.

Below is the implementation of the above approach

## C++

 `// C++ program to implement` `// the above approach`   `#include ` `using` `namespace` `std;`   `// Function to find the minimum operations` `// required to make array elements equal to K` `int` `MinOperation(``int` `arr[], ``int` `N, ``int` `K)` `{` `    ``// Stores minimum count of operations` `    ``int` `cntOpe = 0;`   `    ``// Traverse the given array` `    ``for` `(``int` `i = 0; i < N; i++) {`   `        ``// If K is greater than arr[i]` `        ``if` `(K > arr[i]) {`   `            ``// If (K - arr[i]) is even` `            ``if` `((K - arr[i]) % 2 == 0) {`   `                ``// Update cntOpe` `                ``cntOpe += 2;` `            ``}` `            ``else` `{`   `                ``// Update cntOpe` `                ``cntOpe += 1;` `            ``}` `        ``}`   `        ``// If K is less than arr[i]` `        ``else` `if` `(K < arr[i]) {`   `            ``// If (arr[i] - K) is even` `            ``if` `((K - arr[i]) % 2 == 0) {`   `                ``// Update cntOpe` `                ``cntOpe += 1;` `            ``}` `            ``else` `{`   `                ``// Update cntOpe` `                ``cntOpe += 2;` `            ``}` `        ``}` `    ``}`   `    ``return` `cntOpe;` `}`   `// Driver Code` `int` `main()` `{` `    ``int` `arr[] = { 8, 7, 2, 1, 3 };` `    ``int` `K = 5;` `    ``int` `N = ``sizeof``(arr) / ``sizeof``(arr[0]);` `    ``cout << MinOperation(arr, N, K);`   `    ``return` `0;` `}`

## Java

 `// Java program to implement ` `// the above approach ` `class` `GFG{` `    `  `// Function to find the minimum ` `// operations required to make ` `// array elements equal to K ` `public` `static` `int` `MinOperation(``int` `arr[], ` `                               ``int` `N, ``int` `K) ` `{ ` `  ``// Stores minimum count of ` `  ``// operations ` `  ``int` `cntOpe = ``0``; `   `  ``// Traverse the given array ` `  ``for` `(``int` `i = ``0``; i < N; i++) ` `  ``{` `    ``// If K is greater than` `    ``// arr[i] ` `    ``if` `(K > arr[i]) ` `    ``{` `      ``// If (K - arr[i]) is even ` `      ``if` `((K - arr[i]) % ``2` `== ``0``) ` `      ``{` `        ``// Update cntOpe ` `        ``cntOpe += ``2``; ` `      ``} ` `      ``else` `      ``{` `        ``// Update cntOpe ` `        ``cntOpe += ``1``; ` `      ``} ` `    ``} `   `    ``// If K is less than ` `    ``// arr[i] ` `    ``else` `if` `(K < arr[i]) ` `    ``{` `      ``// If (arr[i] - K) is ` `      ``// even ` `      ``if` `((K - arr[i]) % ``2` `== ``0``) ` `      ``{` `        ``// Update cntOpe ` `        ``cntOpe += ``1``; ` `      ``} ` `      ``else` `      ``{` `        ``// Update cntOpe ` `        ``cntOpe += ``2``; ` `      ``} ` `    ``} ` `  ``} `   `  ``return` `cntOpe; ` `} `   `// Driver code` `public` `static` `void` `main(String[] args) ` `{` `  ``int` `arr[] = {``8``, ``7``, ``2``, ``1``, ``3``}; ` `  ``int` `K = ``5``; ` `  ``int` `N = arr.length; ` `  ``System.out.println(` `  ``MinOperation(arr, N, K));` `}` `}`   `// This code is contributed by divyeshrabadiya07`

## Python3

 `# Python3 program to implement` `# the above approach` ` `  `# Function to find the minimum operations` `# required to make array elements equal to K` `def` `MinOperation(arr, N, K):` `    `  `    ``# Stores minimum count of operations` `    ``cntOpe ``=` `0` ` `  `    ``# Traverse the given array` `    ``for` `i ``in` `range``(N):` ` `  `        ``# If K is greater than arr[i]` `        ``if` `(K > arr[i]):` ` `  `            ``# If (K - arr[i]) is even` `            ``if` `((K ``-` `arr[i]) ``%` `2` `=``=` `0``):` ` `  `                ``# Update cntOpe` `                ``cntOpe ``+``=` `2` `            `  `            ``else``:` ` `  `                ``# Update cntOpe` `                ``cntOpe ``+``=` `1` `            `  `        ``# If K is less than arr[i]` `        ``elif` `(K < arr[i]):` `            `  `            ``# If (arr[i] - K) is even` `            ``if` `((K ``-` `arr[i]) ``%` `2` `=``=` `0``):` ` `  `                ``# Update cntOpe` `                ``cntOpe ``+``=` `1` `            `  `            ``else``:` ` `  `                ``# Update cntOpe` `                ``cntOpe ``+``=` `2`   `    ``return` `cntOpe`   `# Driver Code` `arr ``=` `[ ``8``, ``7``, ``2``, ``1``, ``3` `]` `K ``=` `5` `N ``=` `len``(arr)`   `print``(MinOperation(arr, N, K))`   `# This code is contributed by sanjoy_62`

## C#

 `// C# program to implement ` `// the above approach ` `using` `System;`   `class` `GFG{` `    `  `// Function to find the minimum ` `// operations required to make ` `// array elements equal to K ` `public` `static` `int` `MinOperation(``int` `[]arr, ` `                               ``int` `N, ``int` `K) ` `{ ` `  `  `  ``// Stores minimum count of ` `  ``// operations ` `  ``int` `cntOpe = 0; `   `  ``// Traverse the given array ` `  ``for``(``int` `i = 0; i < N; i++) ` `  ``{` `    `  `    ``// If K is greater than` `    ``// arr[i] ` `    ``if` `(K > arr[i]) ` `    ``{` `      `  `      ``// If (K - arr[i]) is even ` `      ``if` `((K - arr[i]) % 2 == 0) ` `      ``{` `        `  `        ``// Update cntOpe ` `        ``cntOpe += 2; ` `      ``} ` `      ``else` `      ``{` `        `  `        ``// Update cntOpe ` `        ``cntOpe += 1; ` `      ``} ` `    ``} `   `    ``// If K is less than ` `    ``// arr[i] ` `    ``else` `if` `(K < arr[i]) ` `    ``{` `      `  `      ``// If (arr[i] - K) is ` `      ``// even ` `      ``if` `((K - arr[i]) % 2 == 0) ` `      ``{` `        `  `        ``// Update cntOpe ` `        ``cntOpe += 1; ` `      ``} ` `      ``else` `      ``{` `        `  `        ``// Update cntOpe ` `        ``cntOpe += 2; ` `      ``} ` `    ``} ` `  ``} ` `  ``return` `cntOpe; ` `} `   `// Driver code` `public` `static` `void` `Main(String[] args) ` `{` `  ``int` `[]arr = {8, 7, 2, 1, 3}; ` `  ``int` `K = 5; ` `  ``int` `N = arr.Length;` `  `  `  ``Console.WriteLine(` `  ``MinOperation(arr, N, K));` `}` `}`   `// This code is contributed by Amit Katiyar`

## Javascript

 ``

Output:

`8`

Time Complexity: O(N)
Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!

Previous
Next