Given an array and a number k, find a subsequence such that

- Sum of elements in subsequence is maximum
- Indices of elements of subsequence differ atleast by k
- If we select element at index i such that i + k + 1 >= N, then we cannot select any other element as part of the subsequence. Hence we need to decide whether to select this element or one of the elements after it.
- If we select element at index i such that i + k + 1 < N, then the next element we can select is at i + k + 1 index. Thus we need to decide whether to select these two elements, or move on to the next adjacent element.
- Maximum subsequence sum of at most K-distant adjacent elements
- Maximum subsequence sum with adjacent elements having atleast K difference in index
- Maximum length subsequence such that adjacent elements in the subsequence have a common factor
- Number of ways to select equal sized subarrays from two arrays having atleast K equal pairs of elements
- Count maximum occurrence of subsequence in string such that indices in subsequence is in A.P.
- Minimum window size containing atleast P primes in every window of given range
- Number of ways of cutting a Matrix such that atleast one cell is filled in each part
- Longest subsequence such that every element in the subsequence is formed by multiplying previous element with a prime
- Longest Increasing Subsequence using Longest Common Subsequence Algorithm
- Find the equal pairs of subsequence of S and subsequence of T
- Maximum length subsequence with difference between adjacent elements as either 0 or 1
- Minimal product subsequence where adjacent elements are separated by a maximum distance of K
- Maximum score assigned to a subsequence of numerically consecutive and distinct array elements
- Maximum Sum Increasing Subsequence | DP-14
- Printing Maximum Sum Increasing Subsequence
- Maximum sum alternating subsequence
- Maximum subsequence sum such that no three are consecutive
- Maximum Sum Decreasing Subsequence
- Maximum Sum Subsequence of length k
- Maximum sum subsequence with values differing by at least 2

Examples

Input : arr[] = {4, 5, 8, 7, 5, 4, 3, 4, 6, 5} k = 2 Output: 19 Explanation: The highest value is obtained if you pick indices 1, 4, 7, 10 giving 4 + 7 + 3 + 5 = 19 Input: arr[] = {50, 70, 40, 50, 90, 70, 60, 40, 70, 50} k = 2 Output: 230 Explanation: There are 10 elements and k = 2. If you select 2, 5, and 9 you get a total value of 230, which is the maximum possible.

A **simple solution **is to consider all subsequences one by one. In every subsequence, check for distance condition and return the maximum sum subsequence.

An **efficient solution** is to use dynamic programming.

There are two cases:

These two cases can be written as:

Let MS[i] denotes the maximum sum of subsequence from i = N-2 to 0. Base Case: MS[N-1] = arr[N-1] If i + 1 + k >= N MS[i] = max(arr[i], MS[i+1]), Else MS[i] = max(arr[i] + MS[i+k+1], MS[i+1]) Evidently, the solution to the problem is to find MS[0].

Below is the implementation:

## C++

`// CPP program to find maximum sum subsequence ` `// such that elements are at least k distance ` `// away. ` `#include <bits/stdc++.h> ` `using` `namespace` `std; ` ` ` `int` `maxSum(` `int` `arr[], ` `int` `N, ` `int` `k) ` `{ ` ` ` `// MS[i] is going to store maximum sum ` ` ` `// subsequence in subarray from arr[i] ` ` ` `// to arr[n-1] ` ` ` `int` `MS[N]; ` ` ` ` ` `// We fill MS from right to left. ` ` ` `MS[N - 1] = arr[N - 1]; ` ` ` `for` `(` `int` `i = N - 2; i >= 0; i--) { ` ` ` `if` `(i + k + 1 >= N) ` ` ` `MS[i] = max(arr[i], MS[i + 1]); ` ` ` `else` ` ` `MS[i] = max(arr[i] + MS[i + k + 1], MS[i + 1]); ` ` ` `} ` ` ` ` ` `return` `MS[0]; ` `} ` ` ` `// Driver code ` `int` `main() ` `{ ` ` ` `int` `N = 10, k = 2; ` ` ` `int` `arr[] = { 50, 70, 40, 50, 90, 70, 60, 40, 70, 50 }; ` ` ` `cout << maxSum(arr, N, k); ` ` ` `return` `0; ` `}` |

*chevron_right*

*filter_none*

## Java

`// Java program to find maximum sum subsequence ` `// such that elements are at least k distance ` `// away. ` `import` `java.io.*; ` ` ` `class` `GFG { ` ` ` ` ` `static` `int` `maxSum(` `int` `arr[], ` `int` `N, ` `int` `k) ` ` ` `{ ` ` ` `// MS[i] is going to store maximum sum ` ` ` `// subsequence in subarray from arr[i] ` ` ` `// to arr[n-1] ` ` ` `int` `MS[] = ` `new` `int` `[N]; ` ` ` ` ` `// We fill MS from right to left. ` ` ` `MS[N - ` `1` `] = arr[N - ` `1` `]; ` ` ` `for` `(` `int` `i = N - ` `2` `; i >= ` `0` `; i--) { ` ` ` `if` `(i + k + ` `1` `>= N) ` ` ` `MS[i] = Math.max(arr[i], MS[i + ` `1` `]); ` ` ` `else` ` ` `MS[i] = Math.max(arr[i] + MS[i + k + ` `1` `], ` ` ` `MS[i + ` `1` `]); ` ` ` `} ` ` ` ` ` `return` `MS[` `0` `]; ` ` ` `} ` ` ` ` ` `// Driver code ` ` ` `public` `static` `void` `main(String[] args) ` ` ` `{ ` ` ` `int` `N = ` `10` `, k = ` `2` `; ` ` ` `int` `arr[] = { ` `50` `, ` `70` `, ` `40` `, ` `50` `, ` `90` `, ` `70` `, ` `60` `, ` ` ` `40` `, ` `70` `, ` `50` `}; ` ` ` `System.out.println(maxSum(arr, N, k)); ` ` ` `} ` `} ` `// This code is contributed by Prerna Saini ` |

*chevron_right*

*filter_none*

## Python3

` ` `# Python3 program to find maximum ` `# sum subsequence such that elements ` `# are at least k distance away. ` ` ` `def` `maxSum(arr, N, k): ` ` ` ` ` `# MS[i] is going to store maximum sum ` ` ` `# subsequence in subarray from arr[i] ` ` ` `# to arr[n-1] ` ` ` `MS ` `=` `[` `0` `for` `i ` `in` `range` `(N)] ` ` ` ` ` `# We fill MS from right to left. ` ` ` `MS[N ` `-` `1` `] ` `=` `arr[N ` `-` `1` `] ` ` ` `for` `i ` `in` `range` `(N ` `-` `2` `, ` `-` `1` `, ` `-` `1` `): ` ` ` `if` `(i ` `+` `k ` `+` `1` `>` `=` `N): ` ` ` `MS[i] ` `=` `max` `(arr[i], MS[i ` `+` `1` `]) ` ` ` `else` `: ` ` ` `MS[i] ` `=` `max` `(arr[i] ` `+` `MS[i ` `+` `k ` `+` `1` `], ` ` ` `MS[i ` `+` `1` `]) ` ` ` ` ` `return` `MS[` `0` `] ` ` ` `# Driver code ` `N ` `=` `10` `; k ` `=` `2` `arr ` `=` `[ ` `50` `, ` `70` `, ` `40` `, ` `50` `, ` `90` `, ` `70` `, ` `60` `, ` `40` `, ` `70` `, ` `50` `] ` `print` `(maxSum(arr, N, k)) ` ` ` `# This code is contributed by Anant Agarwal. ` |

*chevron_right*

*filter_none*

## C#

`// C# program to find maximum sum ` `// subsequence such that elements ` `// are at least k distance away. ` `using` `System; ` ` ` `class` `GFG { ` ` ` ` ` `static` `int` `maxSum(` `int` `[]arr, ` `int` `N, ` `int` `k) ` ` ` `{ ` ` ` `// MS[i] is going to store maximum sum ` ` ` `// subsequence in subarray from arr[i] ` ` ` `// to arr[n-1] ` ` ` `int` `[]MS = ` `new` `int` `[N]; ` ` ` ` ` `// We fill MS from right to left. ` ` ` `MS[N - 1] = arr[N - 1]; ` ` ` `for` `(` `int` `i = N - 2; i >= 0; i--) { ` ` ` ` ` `if` `(i + k + 1 >= N) ` ` ` `MS[i] = Math.Max(arr[i], MS[i + 1]); ` ` ` `else` ` ` `MS[i] = Math.Max(arr[i] + MS[i + k + 1], ` ` ` `MS[i + 1]); ` ` ` `} ` ` ` ` ` `return` `MS[0]; ` ` ` `} ` ` ` ` ` `// Driver code ` ` ` `public` `static` `void` `Main() ` ` ` `{ ` ` ` `int` `N = 10, k = 2; ` ` ` `int` `[]arr = { 50, 70, 40, 50, 90, 70, 60, ` ` ` `40, 70, 50 }; ` ` ` `Console.WriteLine(maxSum(arr, N, k)); ` ` ` `} ` `} ` ` ` `// This code is contributed by Anant Agarwal. ` |

*chevron_right*

*filter_none*

## PHP

`<?php ` `// PHP program to find ` `// maximum sum subsequence ` `// such that elements are ` `// at least k distance ` `// away. ` ` ` `function` `maxSum(` `$arr` `, ` `$N` `, ` `$k` `) ` `{ ` ` ` ` ` `// MS[i] is going to ` ` ` `// store maximum sum ` ` ` `// subsequence in ` ` ` `// subarray from arr[i] ` ` ` `// to arr[n-1] ` ` ` ` ` `// We fill MS from ` ` ` `// right to left. ` ` ` `$MS` `[` `$N` `- 1] = ` `$arr` `[` `$N` `- 1]; ` ` ` `for` `(` `$i` `= ` `$N` `- 2; ` `$i` `>= 0; ` `$i` `--) ` ` ` `{ ` ` ` `if` `(` `$i` `+ ` `$k` `+ 1 >= ` `$N` `) ` ` ` `$MS` `[` `$i` `] = max(` `$arr` `[` `$i` `], ` ` ` `$MS` `[` `$i` `+ 1]); ` ` ` `else` ` ` `$MS` `[` `$i` `] = max(` `$arr` `[` `$i` `] + ` ` ` `$MS` `[` `$i` `+ ` `$k` `+ 1], ` ` ` `$MS` `[` `$i` `+ 1]); ` ` ` `} ` ` ` ` ` `return` `$MS` `[0]; ` `} ` ` ` `// Driver code ` `$N` `= 10; ` `$k` `= 2; ` `$arr` `= ` `array` `(50, 70, 40, 50, 90, ` ` ` `70, 60, 40, 70, 50); ` `echo` `(maxSum(` `$arr` `, ` `$N` `, ` `$k` `)); ` ` ` `// This code is contributed by Ajit. ` `?> ` |

*chevron_right*

*filter_none*

Output:

230

Time Complexity : O(n)

Auxiliary Space : O(n)

This article is contributed by **Sayan Mahapatra**. If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the **DSA Self Paced Course** at a student-friendly price and become industry ready.