Skip to content
Related Articles

Related Articles

Maximum subsequence sum of at most K-distant adjacent elements
  • Last Updated : 19 Jan, 2021

Given an array arr[] consisting of integers of length N and an integer K (1 <= K <= N), the task is to find the maximum sub-sequence sum in the array such that adjacent elements in that sub-sequence have at most a difference of K in their indices in the original array. In other words, if i and j are indices of two consecutive elements of sub-sequence in original array then |i-j| <= K  .

Examples:

Input: arr[] = {1, 2, -2, 4, 3, 1}, K = 2
Output: 11 
Explanation : The subsequence with maximum sum is {1, 2, 4, 3, 1} (difference between indices <=2)

Input: arr[] = {4, -2, -2, -1, 3, -1}, K = 2
Output:
Explanation : The sub-sequence with maximum sum is {4, -2, 3} (difference between indices <=2)

Naive approach: Generate all possible subsets of the array and check for each of the subsets whether it satisfies the condition such that two adjacent elements have at most difference of K in their indices. If yes, then compare its sum with the largest sum obtained till now and update the sum if it is greater than the obtained sum till now.

Efficient Approach: This problem can be solved using Dynamic Programming

Create a table dp[], where dp[i] stores the largest possible sum for the sub-sequence till the ith index.



  • If the current element is the first element of the sub-sequence then:

   dp[i] =arr[i] 
 

  • Otherwise, we have to check previous results and check what is the maximum result of dp in a window of K behind this index :

   dp[i] = max(arr[i] + dp[x]) where x is from [i-k, i-1] 
 

  • For every index choose that condition which gives the maximum sum at that index, So final recurrence relation will be:

dp[i] = max(arr[i], arr[i] + dp[x])  where   i-k <= x <= i-1

So, for checking what is the maximum value behind this index in a window of K, either we can iterate from dp[i-1] to dp[i-k] and find the maximum value, in which case the time complexity will be O(N*K) or it can be reduced by taking an ordered map and keep maintaining the computed dp[i] values for every index. This reduces the complexity to O(N*log(K)).

Below is the implementation of the above approach.

C++




// C++ implementation to
// C++ program to
// find the maximum sum
// subsequence such that
// two adjacent element
// have atmost difference
// of K in their indices
 
#include <iostream>
#include <iterator>
#include <map>
using namespace std;
 
int max_sum(int arr[], int N,
            int K)
{
 
    // DP Array to store the
    // maximum sum obtained
    // till now
    int dp[N];
 
    // Ordered map to store DP
    // values in a window ok K
    map<int, int> mp;
 
    // Initializing dp[0]=arr[0]
    dp[0] = arr[0];
 
    // Inserting value of DP[0]
    // in map
    mp[dp[0]]++;
 
    // Intializing final answer
    // with dp[0]
    int ans = dp[0];
 
    for (int i = 1;
         i < N; i++) {
 
        // when i<k there is no
        // need to delete elements
        // from map as window is
        // less than K
        if (i < K) {
 
            // Initializing interator
            // to end af map
            auto it = mp.end();
 
            // Decreasing iterator to
            // get maximum key
            it--;
 
            // Evaluating DP[i]
            // from reccurence
            dp[i] = max(it->first
                            + arr[i],
                        arr[i]);
 
            // Inserting dp value in map
            mp[dp[i]]++;
        }
        else {
 
            auto it = mp.end();
            it--;
            dp[i] = max(it->first
                            + arr[i],
                        arr[i]);
 
            mp[dp[i]]++;
 
            // Deleting dp[i-k] from
            // map beacuse window size
            // has become K+1
            mp[dp[i - K]]--;
 
            // Erase the key from if
            // count of dp[i-K] becomes
            // zero
            if (mp[dp[i - K]] == 0) {
 
                mp.erase(dp[i - K]);
            }
        }
 
        // Calculating final answer
        ans = max(ans, dp[i]);
    }
    return ans;
}
 
// Driver code
int main()
{
    int arr[] = { 1, 2, -2,
                  4, 3, 1 };
    int N = sizeof(arr) / sizeof(int);
    int K = 2;
    cout << max_sum(arr, N, K);
    return 0;
}

Java




// Java program to
// find the maximum sum
// subsequence such that
// two adjacent element
// have atmost difference
// of K in their indices
import java.util.*;
class GFG
{
  static int max_sum(int[] arr, int N, int K)
  {
 
    // DP Array to store the
    // maximum sum obtained
    // till now
    int[] dp = new int[N];
 
    // Ordered map to store DP
    // values in a window ok K
    HashMap<Integer, Integer> mp = new HashMap<>();
 
    // Initializing dp[0]=arr[0]
    dp[0] = arr[0];
 
    // Inserting value of DP[0]
    // in map
    if(mp.containsKey(dp[0]))
    {
      mp.put(dp[0], mp.get(dp[0]) + 1);  
    }
    else{
      mp.put(dp[0], 1);
    }
 
    // Intializing final answer
    // with dp[0]
    int ans = dp[0];    
    for (int i = 1; i < N; i++)
    {
 
      // when i<k there is no
      // need to delete elements
      // from map as window is
      // less than K
      if (i < K)
      {
 
        // Evaluating DP[i]
        // from reccurence
        Set<Integer> keySet = mp.keySet();
        ArrayList<Integer> Keys = new ArrayList<Integer>(keySet);
        dp[i] = Math.max(Keys.get(Keys.size()-1) + arr[i], arr[i]);
 
        // Inserting dp value in map
 
        if(mp.containsKey(dp[i]))
        {
          mp.put(dp[i], mp.get(dp[i]) + 1);
        }
        else{
          mp.put(dp[i], 1);
        }
      }
      else {
        Set<Integer> keySet = mp.keySet();
        ArrayList<Integer> Keys = new ArrayList<Integer>(keySet);
        dp[i] = Math.max(Keys.get(Keys.size()-1) + arr[i], arr[i]);
 
        if(mp.containsKey(dp[i]))
        {
          mp.put(dp[i], mp.get(dp[i]) + 1);  
        }
        else{
          mp.put(dp[i], 1);
        }
 
        // Deleting dp[i-k] from
        // map beacuse window size
        // has become K+1
        if(mp.containsKey(dp[i - K]))
        {
          mp.put(dp[i - K], mp.get(dp[i - K]) - 1);
        }
        else{
          mp.put(dp[i - K], - 1);
        }
 
        // Erase the key from if
        // count of dp[i-K] becomes
        // zero
        if (mp.get(dp[i - K]) == 0)
        {  
          mp.remove(dp[i - K]);
        }
      }
 
      // Calculating final answer
      ans = Math.max(ans, dp[i]);
    }
    return ans;
  }
 
  // Driver code
  public static void main(String[] args) {
    int[] arr = { 1, 2, -2,
                 4, 3, 1 };
    int N = arr.length;
    int K = 2;
    System.out.println(max_sum(arr, N, K));
  }
}
 
// This code is contributed by divyesh072019

Python3




# Python3 program to
# find the maximum sum
# subsequence such that
# two adjacent element
# have atmost difference
# of K in their indices
 
def max_sum(arr, N, K):
  
    # DP Array to store the
    # maximum sum obtained
    # till now
    dp = [0 for i in range(N)]
  
    # Ordered map to store DP
    # values in a window ok K
    mp = dict()
  
    # Initializing dp[0]=arr[0]
    dp[0] = arr[0];
  
    # Inserting value of DP[0]
    # in map
    mp[dp[0]] = 1
  
    # Intializing final answer
    # with dp[0]
    ans = dp[0];
     
    for i in range(1, N):
  
        # when i<k there is no
        # need to delete elements
        # from map as window is
        # less than K
        if (i < K):
  
            # Initializing interator
            # to end af map
            it = list(mp)[-1]
  
            # Evaluating DP[i]
            # from reccurence
            dp[i] = max(it + arr[i], arr[i])
  
            # Inserting dp value in map
            if dp[i] in mp:
                mp[dp[i]] += 1
            else:
                mp[dp[i]] = 1
         
        else:
  
            it = list(mp)[-1]
             
            dp[i] = max(it + arr[i],arr[i]);
 
            if dp[i] in mp:
                mp[dp[i]] += 1
            else:
                mp[dp[i]] = 1
  
            # Deleting dp[i-k] from
            # map beacuse window size
            # has become K+1
            if mp[dp[i - K]] == 0:
                mp[dp[i - K]] -= 1
          
        # Calculating final answer
        ans = max(ans, dp[i]);
     
    return ans;
 
# Driver code
if __name__=='__main__':
 
    arr = [ 1, 2, -2, 4, 3, 1 ]
    N = len(arr)
    K = 2;
     
    print(max_sum(arr, N, K))
     
# This code is contributed by rutvik_56

C#




// C# program to
// find the maximum sum
// subsequence such that
// two adjacent element
// have atmost difference
// of K in their indices
using System;
using System.Collections.Generic; 
using System.Linq;
class GFG
{
 
  static int max_sum(int[] arr, int N, int K)
  {
 
    // DP Array to store the
    // maximum sum obtained
    // till now
    int[] dp = new int[N];
 
    // Ordered map to store DP
    // values in a window ok K
    Dictionary<int, int> mp = new Dictionary<int, int>();
 
    // Initializing dp[0]=arr[0]
    dp[0] = arr[0];
 
    // Inserting value of DP[0]
    // in map
    if(mp.ContainsKey(dp[0]))
    {
      mp[dp[0]]++;  
    }
    else{
      mp[dp[0]] = 1;
    }
 
    // Intializing final answer
    // with dp[0]
    int ans = dp[0];    
    for (int i = 1; i < N; i++)
    {
 
      // when i<k there is no
      // need to delete elements
      // from map as window is
      // less than K
      if (i < K)
      {
 
        // Evaluating DP[i]
        // from reccurence
        dp[i] = Math.Max(mp.Keys.Last() + arr[i], arr[i]);
 
        // Inserting dp value in map
 
        if(mp.ContainsKey(dp[i]))
        {
          mp[dp[i]]++;  
        }
        else{
          mp[dp[i]] = 1;
        }
      }
      else {
 
        dp[i] = Math.Max(mp.Keys.Last() + arr[i], arr[i]);
 
        if(mp.ContainsKey(dp[i]))
        {
          mp[dp[i]]++;  
        }
        else{
          mp[dp[i]] = 1;
        }
 
        // Deleting dp[i-k] from
        // map beacuse window size
        // has become K+1
        if(mp.ContainsKey(dp[i - K]))
        {
          mp[dp[i - K]]--;  
        }
        else{
          mp[dp[i - K]] = -1;
        }
 
        // Erase the key from if
        // count of dp[i-K] becomes
        // zero
        if (mp[dp[i - K]] == 0)
        {  
          mp.Remove(dp[i - K]);
        }
      }
 
      // Calculating final answer
      ans = Math.Max(ans, dp[i] + 1);
    }
    return ans;
  }
 
  // Driver code
  static void Main()
  {
    int[] arr = { 1, 2, -2,
                 4, 3, 1 };
    int N = arr.Length;
    int K = 2;
    Console.Write(max_sum(arr, N, K));
  }
}
 
// This code is contributed by divyeshrabadiya07
Output: 
11

 

Time Complexity: O(N*log(K))
 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

My Personal Notes arrow_drop_up
Recommended Articles
Page :