Skip to content
Related Articles

Related Articles

Improve Article
Maximum sum of non-overlapping subarrays of length atmost K
  • Difficulty Level : Hard
  • Last Updated : 11 May, 2021

Given an integer array ‘arr’ of length N and an integer ‘k’, select some non-overlapping subarrays such that each sub-array if of length at most ‘k’, no two sub-arrays are adjacent and sum of all the elements of the selected sub-arrays are maximum.
Examples: 
 

Input : arr[] = {-1, 2, -3, 4, 5}, k = 2
Output : 11
Sub-arrays that maximizes sum will be {{2}, {4, 5}}.
Thus, the answer will be 2+4+5 = 11.

Input :arr[] = {1, 1, 1, 1, 1}, k = 1
Output : 3

 

Naive Approach : A simple way is to generate all possible subsets of elements satisfying above conditions recursively and find the subset with maximum sum. 
Time Complexity : O(2N
Efficient Approach: A better approach is to use dynamic programming.
Let’s suppose we are at an index ‘i’. 
Let dp[i] be defined as the maximum sum of elements of all possible subsets of sub-array {i, n-1} satisfying above conditions.
We will have ‘K+1’ possible choices i.e.
 

  1. Reject ‘i’ and solve for ‘i+1’.
  2. Select sub-array {i} and solve for ‘i+2’
  3. Select sub-array {i, i+1} and solve for ‘i+3’

Thus, recurrence relation will be: 
 

dp[i] = max(dp[i+1], arr[i]+dp[i+2], arr[i]+arr[i+1]+dp[i+3],
        ...arr[i]+arr[i+1]+arr[i+2]...+arr[i+k-1] + dp[i+k+1])

Below is the implementation of the above approach: 
 



C++




// C++ program to implement above approach
#include <bits/stdc++.h>
#define maxLen 10
using namespace std;
 
// Variable to store states of dp
int dp[maxLen];
 
// Variable to check if a given state has been solved
bool visit[maxLen];
 
// Function to find the maximum sum subsequence
// such that no two elements are adjacent
int maxSum(int arr[], int i, int n, int k)
{
    // Base case
    if (i >= n)
        return 0;
 
    // To check if a state has been solved
    if (visit[i])
        return dp[i];
    visit[i] = 1;
 
    // Variable to store
    // prefix sum for sub-array
    // {i, j}
    int tot = 0;
    dp[i] = maxSum(arr, i + 1, n, k);
 
    // Required recurrence relation
    for (int j = i; j < i + k and j < n; j++) {
        tot += arr[j];
        dp[i] = max(dp[i], tot +
                     maxSum(arr, j + 2, n, k));
    }
 
    // Returning the value
    return dp[i];
}
 
// Driver code
int main()
{
    // Input array
    int arr[] = { -1, 2, -3, 4, 5 };
 
    int k = 2;
 
    int n = sizeof(arr) / sizeof(int);
 
    cout << maxSum(arr, 0, n, k);
 
    return 0;
}

Java




// Java program to implement above approach
import java.io.*;
 
class GFG
{
     
    static int maxLen = 10;
     
    // Variable to store states of dp
    static int dp[] = new int[maxLen];
     
    // Variable to check
    // if a given state has been solved
    static boolean []visit = new boolean[maxLen];
     
    // Function to find the maximum sum subsequence
    // such that no two elements are adjacent
    static int maxSum(int arr[], int i,
                    int n, int k)
    {
        // Base case
        if (i >= n)
            return 0;
     
        // To check if a state has been solved
        if (visit[i])
            return dp[i];
        visit[i] = true;
     
        // Variable to store
        // prefix sum for sub-array
        // {i, j}
        int tot = 0;
        dp[i] = maxSum(arr, i + 1, n, k);
     
        // Required recurrence relation
        for (int j = i; j < (i + k) &&
                            (j < n); j++)
        {
            tot += arr[j];
            dp[i] = Math.max(dp[i], tot +
                    maxSum(arr, j + 2, n, k));
        }
     
        // Returning the value
        return dp[i];
    }
 
    // Driver code
    public static void main (String[] args)
    {
 
        // Input array
        int arr[] = { -1, 2, -3, 4, 5 };
         
        int k = 2;
         
        int n = arr.length;
         
        System.out.println(maxSum(arr, 0, n, k));
    }
}
 
// This code is contributed by ajit.

Python3




# Python3 program to implement above approach
maxLen = 10
 
# Variable to store states of dp
dp = [0]*maxLen;
 
# Variable to check if a given state has been solved
visit = [0]*maxLen;
 
# Function to find the maximum sum subsequence
# such that no two elements are adjacent
def maxSum(arr, i, n, k) :
 
    # Base case
    if (i >= n) :
        return 0;
 
    # To check if a state has been solved
    if (visit[i]) :
        return dp[i];
         
    visit[i] = 1;
 
    # Variable to store
    # prefix sum for sub-array
    # {i, j}
    tot = 0;
    dp[i] = maxSum(arr, i + 1, n, k);
 
    # Required recurrence relation
    j = i
    while (j < i + k and j < n) :
        tot += arr[j];
        dp[i] = max(dp[i], tot +
                    maxSum(arr, j + 2, n, k));
                     
        j += 1
     
    # Returning the value
    return dp[i];
 
 
# Driver code
if __name__ == "__main__" :
 
    # Input array
    arr = [ -1, 2, -3, 4, 5 ];
 
    k = 2;
 
    n = len(arr);
 
    print(maxSum(arr, 0, n, k));
     
# This code is contributed by AnkitRai01

C#




// C# program to implement above approach
using System;
 
class GFG
{
static int maxLen = 10;
 
// Variable to store states of dp
static int []dp = new int[maxLen];
 
// Variable to check
// if a given state has been solved
static bool []visit = new bool[maxLen];
 
// Function to find the maximum sum subsequence
// such that no two elements are adjacent
static int maxSum(int []arr, int i,
                  int n, int k)
{
    // Base case
    if (i >= n)
        return 0;
 
    // To check if a state has been solved
    if (visit[i])
        return dp[i];
    visit[i] = true;
 
    // Variable to store
    // prefix sum for sub-array
    // {i, j}
    int tot = 0;
    dp[i] = maxSum(arr, i + 1, n, k);
 
    // Required recurrence relation
    for (int j = i; j < (i + k) &&
                        (j < n); j++)
    {
        tot += arr[j];
        dp[i] = Math.Max(dp[i], tot +
                  maxSum(arr, j + 2, n, k));
    }
 
    // Returning the value
    return dp[i];
}
 
// Driver code
static public void Main ()
{
 
    // Input array
    int []arr = { -1, 2, -3, 4, 5 };
     
    int k = 2;
     
    int n = arr.Length;
     
    Console.WriteLine (maxSum(arr, 0, n, k));
}
}
 
// This code is contributed by ajit.

Javascript




<script>
    // Javascript program to implement above approach
     
    let maxLen = 10;
   
    // Variable to store states of dp
    let dp = new Array(maxLen);
 
    // Variable to check
    // if a given state has been solved
    let visit = new Array(maxLen);
 
    // Function to find the maximum sum subsequence
    // such that no two elements are adjacent
    function maxSum(arr, i, n, k)
    {
        // Base case
        if (i >= n)
            return 0;
 
        // To check if a state has been solved
        if (visit[i])
            return dp[i];
        visit[i] = true;
 
        // Variable to store
        // prefix sum for sub-array
        // {i, j}
        let tot = 0;
        dp[i] = maxSum(arr, i + 1, n, k);
 
        // Required recurrence relation
        for (let j = i; j < (i + k) &&
                            (j < n); j++)
        {
            tot += arr[j];
            dp[i] = Math.max(dp[i], tot +
                      maxSum(arr, j + 2, n, k));
        }
 
        // Returning the value
        return dp[i];
    }
     
    // Input array
    let arr = [ -1, 2, -3, 4, 5 ];
       
    let k = 2;
       
    let n = arr.length;
       
    document.write(maxSum(arr, 0, n, k));
 
</script>
Output: 
11

 

Time Complexity: O(n*k) 
 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with industry experts, please refer Geeks Classes Live 




My Personal Notes arrow_drop_up
Recommended Articles
Page :