Skip to content
Related Articles

Related Articles

Maximum subsequence sum such that all elements are K distance apart
  • Difficulty Level : Easy
  • Last Updated : 13 Sep, 2019
GeeksforGeeks - Summer Carnival Banner

Given an array arr[] of N integers and another integer K. The task is to find the maximum sum of a subsequence such that the difference of the indices of all consecutive elements in the subsequence in the original array is exactly K. For example, if arr[i] is the first element of the subsequence then the next element has to be arr[i + k] then arr[i + 2k] and so on.

Examples:

Input: arr[] = {2, -3, -1, -1, 2}, K = 2
Output: 3

Input: arr[] = {2, 3, -1, -1, 2}, K = 3
Output: 5

Approach: There are K sequences possible where the elememts are K distance apart and these can be of the forms:



0, 0 + k, 0 + 2k, …, 0 + n*k
1, 1 + k, 1 + 2k, …, 1 + n*k
2, 2 + k, 2 + 2k, …, 2 + n*k
k-1, k-1 + k, k-1 + 2k, …, k-1 + n*k

Now, any subarray of the sequences is a subsequence of the original array where elements are K distance apart from each other.

So, the task now reduces to find the maximum subarray sum of these sequences which can be found by Kadane’s algorithm.

Below is the implementation of the above approach:

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
  
// Function to return the maximum subarray sum
// for the array {a[i], a[i + k], a[i + 2k], ...}
int maxSubArraySum(int a[], int n, int k, int i)
{
    int max_so_far = INT_MIN, max_ending_here = 0;
  
    while (i < n) {
        max_ending_here = max_ending_here + a[i];
        if (max_so_far < max_ending_here)
            max_so_far = max_ending_here;
  
        if (max_ending_here < 0)
            max_ending_here = 0;
  
        i += k;
    }
    return max_so_far;
}
  
// Function to return the sum of
// the maximum required subsequence
int find(int arr[], int n, int k)
{
    // To store the result
    int maxSum = 0;
  
    // Run a loop from 0 to k
    for (int i = 0; i <= min(n, k); i++) {
        int sum = 0;
  
        // Find the maximum subarray sum for the
        // array {a[i], a[i + k], a[i + 2k], ...}
        maxSum = max(maxSum,
                     maxSubArraySum(arr, n, k, i));
    }
  
    // Return the maximum value
    return maxSum;
}
  
// Driver code
int main()
{
    int arr[] = { 2, -3, -1, -1, 2 };
    int n = sizeof(arr) / sizeof(arr[0]);
    int k = 2;
  
    cout << find(arr, n, k);
  
    return 0;
}

Java




// Java implementation of the approach 
import java.util.*;
  
class GFG
{
  
// Function to return the maximum subarray sum 
// for the array {a[i], a[i + k], a[i + 2k], ...} 
static int maxSubArraySum(int a[], int n, 
                          int k, int i) 
    int max_so_far = Integer.MIN_VALUE,
        max_ending_here = 0
  
    while (i < n) 
    
        max_ending_here = max_ending_here + a[i]; 
        if (max_so_far < max_ending_here) 
            max_so_far = max_ending_here; 
  
        if (max_ending_here < 0
            max_ending_here = 0
  
        i += k; 
    
    return max_so_far; 
  
// Function to return the sum of 
// the maximum required subsequence 
static int find(int arr[], int n, int k) 
    // To store the result 
    int maxSum = 0
  
    // Run a loop from 0 to k 
    for (int i = 0; i <= Math.min(n, k); i++)
    
        int sum = 0
  
        // Find the maximum subarray sum for the 
        // array {a[i], a[i + k], a[i + 2k], ...} 
        maxSum = Math.max(maxSum, 
                      maxSubArraySum(arr, n, k, i)); 
    
  
    // Return the maximum value 
    return maxSum; 
  
// Driver code 
public static void main(String[] args) 
{
    int arr[] = {2, -3, -1, -1, 2};
    int n = arr.length;
    int k = 2;
  
    System.out.println(find(arr, n, k));
}
  
// This code is contributed by Rajput-Ji

Python3




# Python3 implementation of the approach
# Function to return the maximum subarray sum
# for the array {a[i], a[i + k], a[i + 2k], ...}
import sys
def maxSubArraySum(a, n, k, i):
  
    max_so_far = -sys.maxsize;
    max_ending_here = 0;
  
    while (i < n):
        max_ending_here = max_ending_here + a[i];
        if (max_so_far < max_ending_here):
            max_so_far = max_ending_here;
  
        if (max_ending_here < 0):
            max_ending_here = 0;
  
        i += k;
      
    return max_so_far;
  
# Function to return the sum of
# the maximum required subsequence
def find(arr, n, k):
  
    # To store the result
    maxSum = 0;
  
    # Run a loop from 0 to k
    for i in range(0, min(n, k) + 1):
        sum = 0;
  
        # Find the maximum subarray sum for the
        # array {a[i], a[i + k], a[i + 2k], ...}
        maxSum = max(maxSum,
                     maxSubArraySum(arr, n, k, i));
      
    # Return the maximum value
    return maxSum;
  
# Driver code
if __name__ == '__main__':
    arr = [ 2, -3, -1, -1, 2 ];
    n = len(arr);
    k = 2;
  
    print(find(arr, n, k));
  
# This code is contributed by Princi Singh

C#




// C# implementation of the approach 
using System;
  
class GFG
{
      
    // Function to return the maximum subarray sum 
    // for the array {a[i], a[i + k], a[i + 2k], ...} 
    static int maxSubArraySum(int []a, int n, 
                              int k, int i) 
    
        int max_so_far = int.MinValue,
            max_ending_here = 0; 
      
        while (i < n) 
        
            max_ending_here = max_ending_here + a[i]; 
            if (max_so_far < max_ending_here) 
                max_so_far = max_ending_here; 
      
            if (max_ending_here < 0) 
                max_ending_here = 0; 
      
            i += k; 
        
        return max_so_far; 
    
      
    // Function to return the sum of 
    // the maximum required subsequence 
    static int find(int []arr, int n, int k) 
    
        // To store the result 
        int maxSum = 0; 
      
        // Run a loop from 0 to k 
        for (int i = 0; i <= Math.Min(n, k); i++)
        
  
            // Find the maximum subarray sum for the 
            // array {a[i], a[i + k], a[i + 2k], ...} 
            maxSum = Math.Max(maxSum, 
                              maxSubArraySum(arr, n, k, i)); 
        
      
        // Return the maximum value 
        return maxSum; 
    
      
    // Driver code 
    public static void Main() 
    {
        int []arr = {2, -3, -1, -1, 2};
        int n = arr.Length;
        int k = 2;
      
        Console.WriteLine(find(arr, n, k));
    }    
}
  
// This code is contributed by AnkitRai01
Output:
3

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.

My Personal Notes arrow_drop_up
Recommended Articles
Page :