Open In App
Related Articles

Maximum subarray sum in an array created after repeated concatenation

Improve Article
Improve
Save Article
Save
Like Article
Like

Given an array and a number k, find the largest sum of contiguous array in the modified array which is formed by repeating the given array k times. 

Examples : 

Input  : arr[] = {-1, 10, 20}, k = 2
Output : 59
After concatenating array twice, we 
get {-1, 10, 20, -1, 10, 20} which has 
maximum subarray sum as 59.

Input  : arr[] = {-1, -2, -3}, k = 3
Output : -1

Naive Approach: A simple solution is to create an array of size n*k, then run Kadane’s algorithm.

  • Time Complexity: O(nk)
  • Auxiliary Space: O(n*k)

Efficient Approach: A better solution is to run a loop on same array and use modular arithmetic to move back beginning after end of array. 

Below is the implementation:

C++




// C++ program to print largest contiguous
// array sum when array is created after
// concatenating a small array k times.
#include<bits/stdc++.h>
using namespace std;
 
// Returns sum of maximum sum subarray created
// after concatenating a[0..n-1] k times.
int maxSubArraySumRepeated(int a[], int n, int k)
{
    int max_so_far = INT_MIN, max_ending_here = 0;
 
    for (int i = 0; i < n*k; i++)
    {
        // This is where it differs from Kadane's
        // algorithm. We use modular arithmetic to
        // find next element.
        max_ending_here = max_ending_here + a[i%n];
 
        if (max_so_far < max_ending_here)
            max_so_far = max_ending_here;
 
        if (max_ending_here < 0)
            max_ending_here = 0;
    }
    return max_so_far;
}
 
/*Driver program to test maxSubArraySum*/
int main()
{
    int a[] = {10, 20, -30, -1};
    int n = sizeof(a)/sizeof(a[0]);
    int k = 3;
    cout << "Maximum contiguous sum is "
         << maxSubArraySumRepeated(a, n, k);
    return 0;
}


Java




// Java program to print largest contiguous
// array sum when array is created after
// concatenating a small array k times.
import java.io.*;
 
class GFG {
     
// Returns sum of maximum sum
// subarray created after
// concatenating a[0..n-1] k times.
static int maxSubArraySumRepeated(int a[],
                             int n, int k)
{
    int max_so_far = 0;
    int INT_MIN, max_ending_here=0;
 
    for (int i = 0; i < n*k; i++)
    {
        // This is where it differs from
        // Kadane's algorithm. We use modular
        //  arithmetic to find next element.
        max_ending_here = max_ending_here +
                                    a[i % n];
 
        if (max_so_far < max_ending_here)
            max_so_far = max_ending_here;
 
        if (max_ending_here < 0)
            max_ending_here = 0;
    }
    return max_so_far;
}
 
// Driver program to test maxSubArraySum
public static void main (String[] args) {
     
    int a[] = {10, 20, -30, -1};
    int n = a.length;
    int k = 3;
     
    System.out.println("Maximum contiguous sum is "
                   + maxSubArraySumRepeated(a, n, k));
}
 
}
     
// This code is contributed by vt_m


Python3




# Python program to print
# largest contiguous
# array sum when array
# is created after
# concatenating a small
# array k times.
 
# Returns sum of maximum
# sum subarray created
# after concatenating
# a[0..n-1] k times.
def maxSubArraySumRepeated(a, n, k):
 
    max_so_far = -2147483648
    max_ending_here = 0
  
    for i in range(n*k):
     
        # This is where it
        # differs from Kadane's
        # algorithm. We use
        #  modular arithmetic to
        # find next element.
        max_ending_here = max_ending_here + a[i%n]
  
        if (max_so_far < max_ending_here):
            max_so_far = max_ending_here
  
        if (max_ending_here < 0):
            max_ending_here = 0
     
    return max_so_far
  
# Driver program
# to test maxSubArraySum
 
a = [10, 20, -30, -1]
n = len(a)
k = 3
 
print("Maximum contiguous sum is ",
    maxSubArraySumRepeated(a, n, k))
 
# This code is contributed
# by Anant Agarwal.


C#




// C# program to print largest contiguous
// array sum when array is created after
// concatenating a small array k times.
using System;
 
class GFG {
     
// Returns sum of maximum sum
// subarray created after
// concatenating a[0..n-1] k times.
static int maxSubArraySumRepeated(int []a,
                                  int n,
                                  int k)
{
    int max_so_far = 0;
    int max_ending_here=0;
 
    for (int i = 0; i < n * k; i++)
    {
        // This is where it differs from
        // Kadane's algorithm. We use modular
        // arithmetic to find next element.
        max_ending_here = max_ending_here +
                                  a[i % n];
 
        if (max_so_far < max_ending_here)
            max_so_far = max_ending_here;
 
        if (max_ending_here < 0)
            max_ending_here = 0;
    }
    return max_so_far;
}
 
// Driver Code
public static void Main ()
{
     
    int []a = {10, 20, -30, -1};
    int n = a.Length;
    int k = 3;
     
    Console.Write("Maximum contiguous sum is "
                  + maxSubArraySumRepeated(a, n, k));
}
}
     
// This code is contributed by nitin mittal.


PHP




<?php
// PHP program to print largest contiguous
// array sum when array is created after
// concatenating a small array k times.
 
// Returns sum of maximum
// sum subarray created
// after concatenating
// a[0..n-1] k times.
function maxSubArraySumRepeated($a, $n, $k)
{
    $INT_MIN=0;
    $max_so_far = $INT_MIN; $max_ending_here = 0;
 
    for ($i = 0; $i < $n*$k; $i++)
    {
         
        // This is where it differs
        // from Kadane's algorithm.
        // We use modular arithmetic
        // to find next element.
        $max_ending_here = $max_ending_here +
                                  $a[$i % $n];
 
        if ($max_so_far < $max_ending_here)
            $max_so_far = $max_ending_here;
 
        if ($max_ending_here < 0)
            $max_ending_here = 0;
    }
    return $max_so_far;
}
 
    // Driver Code
    $a = array(10, 20, -30, -1);
    $n = sizeof($a);
    $k = 3;
    echo "Maximum contiguous sum is "
          , maxSubArraySumRepeated($a, $n, $k);
 
// This code is contributed by nitin mittal.
?>


Javascript




<script>
// JavaScript program to print largest contiguous
// array sum when array is created after
// concatenating a small array k times.
 
// Returns sum of maximum sum
// subarray created after
// concatenating a[0..n-1] k times.
function maxSubArraySumRepeated(a, n, k)
{
    let max_so_far = 0;
    let INT_MIN, max_ending_here=0;
   
    for (let i = 0; i < n*k; i++)
    {
        // This is where it differs from
        // Kadane's algorithm. We use modular
        //  arithmetic to find next element.
        max_ending_here = max_ending_here +
                                    a[i % n];
   
        if (max_so_far < max_ending_here)
            max_so_far = max_ending_here;
   
        if (max_ending_here < 0)
            max_ending_here = 0;
    }
    return max_so_far;
}
 
 
// Driver code
 
    let a = [10, 20, -30, -1];
    let n = a.length;
    let k = 3;
       
    document.write("Maximum contiguous sum is "
                   + maxSubArraySumRepeated(a, n, k));
 
// This code is contributed by sanjoy_62.
</script>


Output

Maximum contiguous sum is 30

Time Complexity: O(n*k)
Auxiliary Space: O(1)


Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!

Last Updated : 10 Dec, 2022
Like Article
Save Article
Similar Reads
Related Tutorials