Skip to content
Related Articles

Related Articles

Maximum score assigned to a subsequence of numerically consecutive and distinct array elements
  • Last Updated : 07 May, 2021

Given two arrays arr[] and brr[] of size N such that the array brr[] consists of scores associated with corresponding elements of the array arr[]. The task is to find the maximum possible sum of assigned scores of a subsequence of numerically consecutive and distinct elements of the array arr[].
Examples:

Input: arr[] = {1, 2, 3, 3, 3, 1}, brr[] = {-1, 2, 10, 20, -10, -9} 
Output: 22 
Explanation: 
Distinct values from the array = {1, 2, 3} 
Maximum value assigned to each element = {1: -1, 2: 2, 3: 20} 
Select the elements at index 2 and 4 in arr[] which are {2, 3}. 
Maximum score = 2 + 20 = 22.

Input: arr[] = {1, 2, 3, 2, 3, 1}, brr[] = {-1, 2, 10, 20, -10, -9} 
Output: 32 
Explanation: Selected subsequence is {arr[1], arr[2], arr[3]} = {2, 3, 2}

Naive Approach: The simplest approach to solve the problem is to use recursion. Follow the steps below to solve the problem:

  1. Generate all possible subsets of the given array arr[] such that the subset has unique and consecutive elements.
  2. While generating the subsets in the above step, there are two possibilities for every element of either being added to the subsequence or not. Therefore, follow the steps: 
    • If the current element is differed by 1 from the previously selected element, add the element to the subsequence.
    • Otherwise, proceed to the next element.
  3. Update the maximum_score by considering both the above two possibilities.
  4. Print the final value of maximum_score obtained after the complete traversal of the array.

Below is the implementation of the above approach:



C++




// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
  
// Function to find the maximum score
// with unique element in the subset
int maximumSum(int a[], int b[], int n,
               int index, int lastpicked)
{
     
    // Base Case
    if (index == n)
        return 0;
  
    int option1 = 0, option2 = 0;
  
    // Check if the previously picked
    // element differs by 1 from the
    // current element
    if (lastpicked == -1 ||
      a[lastpicked] != a[index])
  
        // Calculate score by including
        // the current element
        option1 = b[index] + maximumSum(
                             a, b, n,
                             index + 1,
                             index);
  
    // Calculate score by excluding
    // the current element
    option2 = maximumSum(a, b, n,
                         index + 1,
                         lastpicked);
  
    // Return maximum of the
    // two possibilities
    return max(option1, option2);
}
  
// Driver code
int main()
{
     
    // Given arrays
    int arr[] = { 1, 2, 3, 3, 3, 1 };
    int brr[] = { -1, 2, 10, 20, -10, -9 };
     
    int N = sizeof(arr) / sizeof(arr[0]);
     
    // Function call
    cout << (maximumSum(arr, brr, N, 0, -1));
}
 
// This code is contributed by rutvik_56

Java




// Java program for the above approach
import java.io.*;
 
class GFG {
 
    // Function to find the maximum score
    // with unique element in the subset
    public static int maximumSum(
        int[] a, int[] b, int n, int index,
        int lastpicked)
    {
        // Base Case
        if (index == n)
            return 0;
 
        int option1 = 0, option2 = 0;
 
        // Check if the previously picked
        // element differs by 1 from the
        // current element
        if (lastpicked == -1
            || a[lastpicked] != a[index])
 
            // Calculate score by including
            // the current element
            option1
                = b[index]
                  + maximumSum(a, b, n,
                               index + 1,
                               index);
 
        // Calculate score by excluding
        // the current element
        option2 = maximumSum(a, b, n,
                             index + 1,
                             lastpicked);
 
        // Return maximum of the
        // two possibilities
        return Math.max(option1, option2);
    }
 
    // Driver Code
    public static void main(String[] args)
    {
        // Given arrays
        int arr[] = { 1, 2, 3, 3, 3, 1 };
        int brr[] = { -1, 2, 10, 20, -10, -9 };
 
        int N = arr.length;
 
        // Function Call
        System.out.println(
            maximumSum(arr, brr,
                       N, 0, -1));
    }
}

Python3




# Python3 program for the above approach
 
# Function to find the maximum score
# with unique element in the subset
def maximumSum(a, b, n, index, lastpicked):
     
    # Base Case
    if (index == n):
        return 0
 
    option1 = 0
    option2 = 0
 
    # Check if the previously picked
    # element differs by 1 from the
    # current element
    if (lastpicked == -1 or
      a[lastpicked] != a[index]):
 
        # Calculate score by including
        # the current element
        option1 = b[index] + maximumSum(a, b, n,
                                        index + 1,
                                        index)
 
    # Calculate score by excluding
    # the current element
    option2 = maximumSum(a, b, n, index + 1,
                         lastpicked)
 
# Return maximum of the
# two possibilities
    return max(option1, option2)
 
# Driver Code
if __name__ == '__main__':
     
    # Given arrays
    arr = [ 1, 2, 3, 3, 3, 1 ]
    brr = [ -1, 2, 10, 20, -10, -9 ]
 
    N = len(arr)
 
    # Function call
    print(maximumSum(arr, brr, N, 0, -1))
 
# This code is contributed by mohit kumar 29

C#




// C# program for
// the above approach
using System;
class GFG{
 
// Function to find the maximum score
// with unique element in the subset
public static int maximumSum(int[] a, int[] b,
                             int n, int index,
                             int lastpicked)
{
  // Base Case
  if (index == n)
    return 0;
 
  int option1 = 0, option2 = 0;
 
  // Check if the previously picked
  // element differs by 1 from the
  // current element
  if (lastpicked == -1 ||
      a[lastpicked] != a[index])
 
    // Calculate score by including
    // the current element
    option1 = b[index] + maximumSum(a, b, n,
                                    index + 1,
                                    index);
 
  // Calculate score by excluding
  // the current element
  option2 = maximumSum(a, b, n,
                       index + 1,
                       lastpicked);
 
  // Return maximum of the
  // two possibilities
  return Math.Max(option1, option2);
}   
 
// Driver Code
public static void Main(String[] args)
{
  // Given arrays
  int []arr = {1, 2, 3, 3, 3, 1};
  int []brr = {-1, 2, 10, 20, -10, -9};
 
  int N = arr.Length;
 
  // Function Call
  Console.WriteLine(maximumSum(arr, brr,
                               N, 0, -1));
}
}
 
// This code is contributed by shikhasingrajput

Javascript




<script>
 
// JavaScript program to implement
// the above approach
 
    // Function to find the maximum score
    // with unique element in the subset
    function maximumSum(
        a, b, n, index,
        lastpicked)
    {
        // Base Case
        if (index == n)
            return 0;
  
        let option1 = 0, option2 = 0;
  
        // Check if the previously picked
        // element differs by 1 from the
        // current element
        if (lastpicked == -1
            || a[lastpicked] != a[index])
  
            // Calculate score by including
            // the current element
            option1
                = b[index]
                  + maximumSum(a, b, n,
                               index + 1,
                               index);
  
        // Calculate score by excluding
        // the current element
        option2 = maximumSum(a, b, n,
                             index + 1,
                             lastpicked);
  
        // Return maximum of the
        // two possibilities
        return Math.max(option1, option2);
    }
  
// Driver code
 
        // Given arrays
        let arr = [ 1, 2, 3, 3, 3, 1 ];
        let brr = [ -1, 2, 10, 20, -10, -9 ];
  
        let N = arr.length;
  
        // Function Call
        document.write(
            maximumSum(arr, brr,
                       N, 0, -1));
 
// This code is contributed by target_2.
</script>
Output: 
22

Time Complexity: O(2N
Auxiliary Space: O(1)

Efficient Approach: The above approach can be optimized by using Dynamic Programming as the problem has Overlapping Subproblems. Below are the steps:

  1. Initialize index as 0 and lastPicked as -1.
  2. Initialize a 2D array say dp[][] to store the result of the subproblems.
  3. The states of dp[][] will be the current index and last picked integer.
  4. Calculate the score for both the possible options: 
    • Select the current element if the last picked integer is different from the current integer.
    • Skip the current element move on to the next element.
  5. Store the current state as the maximum of the value calculated above two-state.
  6. Print the value of dp[index][lastPicked + 1] as the result after all the recursive calls end.

Below is the implementation of the above approach:

C++




// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the maximum
// score possible
int maximumSum(int a[], int b[], int n,
               int index, int lastpicked,
               vector<vector<int>> dp)
{
     
    // Base Case
    if (index == n)
        return 0;
 
    // If previously occurred subproblem
    // occurred
    if (dp[index][lastpicked + 1] != -1)
        return dp[index][lastpicked + 1];
 
    int option1 = 0, option2 = 0;
 
    // Check if lastpicked element differs
    // by 1 from the current element
    if (lastpicked == -1 ||
      a[lastpicked] != a[index])
    {
         
        // Calculate score by including
        // the current element
        option1 = b[index] + maximumSum(a, b, n,
                                        index + 1,
                                        index, dp);
    }
 
    // Calculate score by excluding
    // the current element
    option2 = maximumSum(a, b, n,
                         index + 1,
                         lastpicked, dp);
 
    // Return maximum score from
    // the two possibilities
    return dp[index][lastpicked + 1] = max(option1,
                                           option2);
}
 
// Function to print maximum score
void maximumPoints(int arr[], int brr[], int n)
{
    int index = 0, lastPicked = -1;
 
    // DP array to store results
    // Initialise dp with -1
    vector<vector<int>> dp(n + 5, vector<int>(n + 5, -1));
 
    // Function call
    cout << maximumSum(arr, brr, n, index,
                       lastPicked, dp)
         << endl;
}
  
// Driver code   
int main()
{
     
    // Given arrays
    int arr[] = { 1, 2, 3, 3, 3, 1 };
    int brr[] = { -1, 2, 10, 20, -10, -9 };
 
    int N = sizeof(arr) / sizeof(arr[0]);
 
    // Function call
    maximumPoints(arr, brr, N);
 
   return 0;
}
 
// This code is contributed by divyeshrabadiya07

Java




// Java program for the above approach
import java.util.*;
 
class GFG {
 
    // Function to find the maximum
    // score possible
    public static int maximumSum(
        int[] a, int[] b, int n, int index,
        int lastpicked, int[][] dp)
    {
        // Base Case
        if (index == n)
            return 0;
 
        // If previously occurred subproblem
        // occurred
        if (dp[index][lastpicked + 1] != -1)
            return dp[index][lastpicked + 1];
 
        int option1 = 0, option2 = 0;
 
        // Check if lastpicked element differs
        // by 1 from the current element
        if (lastpicked == -1
            || a[lastpicked] != a[index]) {
 
            // Calculate score by including
            // the current element
            option1 = b[index]
                      + maximumSum(a, b, n,
                                   index + 1,
                                   index, dp);
        }
 
        // Calculate score by excluding
        // the current element
        option2 = maximumSum(a, b, n,
                             index + 1,
                             lastpicked, dp);
 
        // Return maximum score from
        // the two possibilities
        return dp[index][lastpicked + 1]
            = Math.max(option1, option2);
    }
 
    // Function to print maximum score
    public static void maximumPoints(
        int arr[], int brr[], int n)
    {
        int index = 0, lastPicked = -1;
 
        // DP array to store results
        int dp[][] = new int[n + 5][n + 5];
 
        // Initialise dp with -1
        for (int i[] : dp)
            Arrays.fill(i, -1);
 
        // Function call
        System.out.println(
            maximumSum(arr, brr, n,
                       index, lastPicked, dp));
    }
 
    // Driver Code
    public static void main(String[] args)
    {
        // Given arrays
        int arr[] = { 1, 2, 3, 3, 3, 1 };
        int brr[] = { -1, 2, 10, 20, -10, -9 };
 
        int N = arr.length;
 
        // Function Call
        maximumPoints(arr, brr, N);
    }
}

Python3




# Python3 program for
# the above approach
 
# Function to find the
# maximum score possible
def maximumSum(a, b, n, index,
               lastpicked, dp):
 
    # Base Case
    if (index == n):
        return 0
 
    # If previously occurred
    # subproblem occurred
    if (dp[index][lastpicked + 1] != -1):
        return dp[index][lastpicked + 1]
 
    option1, option2 = 0, 0
 
    # Check if lastpicked element differs
    # by 1 from the current element
    if (lastpicked == -1 or
        a[lastpicked] != a[index]):
 
        # Calculate score by including
        # the current element
        option1 = (b[index] +
                   maximumSum(a, b, n,
                              index + 1,
                              index, dp))
    
    # Calculate score by excluding
    # the current element
    option2 = maximumSum(a, b, n,
                         index + 1,
                         lastpicked, dp)
 
    # Return maximum score from
    # the two possibilities
    dp[index][lastpicked + 1] = max(option1,
                                    option2)
    return dp[index][lastpicked + 1]
 
# Function to print maximum score
def maximumPoints(arr, brr, n):
 
    index = 0
    lastPicked = -1
 
    # DP array to store results
    dp =[[ -1 for x in range (n + 5)]
              for y in range (n + 5)]
 
    # Function call
    print (maximumSum(arr, brr,
                      n, index,
                      lastPicked, dp))
 
# Driver Code
if __name__ == "__main__":
   
    # Given arrays
    arr = [1, 2, 3, 3, 3, 1]
    brr = [-1, 2, 10, 20, -10, -9]
 
    N = len(arr)
 
    # Function Call
    maximumPoints(arr, brr, N)
 
# This code is contributed by Chitranayal

C#




// C# program for
// the above approach
using System;
class GFG{
 
// Function to find the maximum
// score possible
public static int maximumSum(int[] a, int[] b,
                             int n, int index,
                             int lastpicked,
                             int[,] dp)
{
  // Base Case
  if (index == n)
    return 0;
 
  // If previously occurred
  // subproblem occurred
  if (dp[index, lastpicked + 1] != -1)
    return dp[index, lastpicked + 1];
 
  int option1 = 0, option2 = 0;
 
  // Check if lastpicked element differs
  // by 1 from the current element
  if (lastpicked == -1 ||
      a[lastpicked] != a[index])
  {
    // Calculate score by including
    // the current element
    option1 = b[index] + maximumSum(a, b, n,
                                    index + 1,
                                    index, dp);
  }
 
  // Calculate score by excluding
  // the current element
  option2 = maximumSum(a, b, n,
                       index + 1,
                       lastpicked, dp);
 
  // Return maximum score from
  // the two possibilities
  return dp[index, lastpicked + 1] =
         Math.Max(option1, option2);
}
 
// Function to print maximum score
public static void maximumPoints(int []arr,
                                 int []brr,
                                 int n)
{
  int index = 0, lastPicked = -1;
 
  // DP array to store results
  int [,]dp = new int[n + 5, n + 5];
 
  // Initialise dp with -1
  for(int i = 0; i < n + 5; i++)
  {
    for (int j = 0; j < n + 5; j++)
    {
      dp[i, j] = -1;
    }
  }
  // Function call
  Console.WriteLine(maximumSum(arr, brr, n,
                               index, lastPicked,
                               dp));
}
 
// Driver Code
public static void Main(String[] args)
{
  // Given arrays
  int []arr = {1, 2, 3, 3, 3, 1};
  int []brr = {-1, 2, 10, 20, -10, -9};
 
  int N = arr.Length;
 
  // Function Call
  maximumPoints(arr, brr, N);
}
}
 
// This code is contributed by Rajput-Ji

Javascript




<script>
 
// JavaScript program for the above approach
 
    // Function to find the maximum
    // score possible
    function maximumSum(
        a, b, n, index,
        lastpicked, dp)
    {
        // Base Case
        if (index == n)
            return 0;
  
        // If previously occurred subproblem
        // occurred
        if (dp[index][lastpicked + 1] != -1)
            return dp[index][lastpicked + 1];
  
        let option1 = 0, option2 = 0;
  
        // Check if lastpicked element differs
        // by 1 from the current element
        if (lastpicked == -1
            || a[lastpicked] != a[index]) {
  
            // Calculate score by including
            // the current element
            option1 = b[index]
                      + maximumSum(a, b, n,
                                   index + 1,
                                   index, dp);
        }
  
        // Calculate score by excluding
        // the current element
        option2 = maximumSum(a, b, n,
                             index + 1,
                             lastpicked, dp);
  
        // Return maximum score from
        // the two possibilities
        return dp[index][lastpicked + 1]
            = Math.max(option1, option2);
    }
  
    // Function to prlet maximum score
    function maximumPolets(
        arr, brr, n)
    {
        let index = 0, lastPicked = -1;
  
        // DP array to store results
        let dp = new Array(n + 5);
        // Loop to create 2D array using 1D array
        for (var i = 0; i < dp.length; i++) {
            dp[i] = new Array(2);
        }
  
        // Initialise dp with -1
        for (var i = 0; i < dp.length; i++) {
            for (var j = 0; j < dp.length; j++) {
            dp[i][j] = -1;
        }
        }
  
        // Function call
        document.write(
            maximumSum(arr, brr, n,
                       index, lastPicked, dp));
    }
  
// Driver Code
 
   // Given arrays
        let arr = [ 1, 2, 3, 3, 3, 1 ];
        let brr = [ -1, 2, 10, 20, -10, -9 ];
  
        let N = arr.length;
  
        // Function Call
        maximumPolets(arr, brr, N);
           
</script>
Output: 
22

Time Complexity: O(N2
Auxiliary Space: O(N2)

 

Attention reader! Don’t stop learning now. Get hold of all the important mathematical concepts for competitive programming with the Essential Maths for CP Course at a student-friendly price. To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

My Personal Notes arrow_drop_up
Recommended Articles
Page :