Longest Bitonic Subsequence | DP-15
Given an array arr[0 … n-1] containing n positive integers, a subsequence of arr[] is called Bitonic if it is first increasing, then decreasing. Write a function that takes an array as argument and returns the length of the longest bitonic subsequence.
A sequence, sorted in increasing order is considered Bitonic with the decreasing part as empty. Similarly, decreasing order sequence is considered Bitonic with the increasing part as empty.
Examples:
Input arr[] = {1, 11, 2, 10, 4, 5, 2, 1}; Output: 6 (A Longest Bitonic Subsequence of length 6 is 1, 2, 10, 4, 2, 1) Input arr[] = {12, 11, 40, 5, 3, 1} Output: 5 (A Longest Bitonic Subsequence of length 5 is 12, 11, 5, 3, 1) Input arr[] = {80, 60, 30, 40, 20, 10} Output: 5 (A Longest Bitonic Subsequence of length 5 is 80, 60, 30, 20, 10)
Source: Microsoft Interview Question
Solution
This problem is a variation of standard Longest Increasing Subsequence (LIS) problem. Let the input array be arr[] of length n. We need to construct two arrays lis[] and lds[] using Dynamic Programming solution of LIS problem. lis[i] stores the length of the Longest Increasing subsequence ending with arr[i]. lds[i] stores the length of the longest Decreasing subsequence starting from arr[i]. Finally, we need to return the max value of lis[i] + lds[i] – 1 where i is from 0 to n-1.
Following is the implementation of the above Dynamic Programming solution.
C++
/* Dynamic Programming implementation of longest bitonic subsequence problem */ #include<stdio.h> #include<stdlib.h> /* lbs() returns the length of the Longest Bitonic Subsequence in arr[] of size n. The function mainly creates two temporary arrays lis[] and lds[] and returns the maximum lis[i] + lds[i] - 1. lis[i] ==> Longest Increasing subsequence ending with arr[i] lds[i] ==> Longest decreasing subsequence starting with arr[i] */ int lbs( int arr[], int n ) { int i, j; /* Allocate memory for LIS[] and initialize LIS values as 1 for all indexes */ int lis[n]; for (i = 0; i < n; i++) lis[i] = 1; /* Compute LIS values from left to right */ for (i = 1; i < n; i++) for (j = 0; j < i; j++) if (arr[i] > arr[j] && lis[i] < lis[j] + 1) lis[i] = lis[j] + 1; /* Allocate memory for lds and initialize LDS values for all indexes */ int lds[n]; for (i = 0; i < n; i++) lds[i] = 1; /* Compute LDS values from right to left */ for (i = n-2; i >= 0; i--) for (j = n-1; j > i; j--) if (arr[i] > arr[j] && lds[i] < lds[j] + 1) lds[i] = lds[j] + 1; /* Return the maximum value of lis[i] + lds[i] - 1*/ int max = lis[0] + lds[0] - 1; for (i = 1; i < n; i++) if (lis[i] + lds[i] - 1 > max) max = lis[i] + lds[i] - 1; return max; } /* Driver program to test above function */ int main() { int arr[] = {0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15}; int n = sizeof (arr)/ sizeof (arr[0]); printf ( "Length of LBS is %d\n" , lbs( arr, n ) ); return 0; } |
Java
/* Dynamic Programming implementation in Java for longest bitonic subsequence problem */ import java.util.*; import java.lang.*; import java.io.*; class LBS { /* lbs() returns the length of the Longest Bitonic Subsequence in arr[] of size n. The function mainly creates two temporary arrays lis[] and lds[] and returns the maximum lis[i] + lds[i] - 1. lis[i] ==> Longest Increasing subsequence ending with arr[i] lds[i] ==> Longest decreasing subsequence starting with arr[i] */ static int lbs( int arr[], int n ) { int i, j; /* Allocate memory for LIS[] and initialize LIS values as 1 for all indexes */ int [] lis = new int [n]; for (i = 0 ; i < n; i++) lis[i] = 1 ; /* Compute LIS values from left to right */ for (i = 1 ; i < n; i++) for (j = 0 ; j < i; j++) if (arr[i] > arr[j] && lis[i] < lis[j] + 1 ) lis[i] = lis[j] + 1 ; /* Allocate memory for lds and initialize LDS values for all indexes */ int [] lds = new int [n]; for (i = 0 ; i < n; i++) lds[i] = 1 ; /* Compute LDS values from right to left */ for (i = n- 2 ; i >= 0 ; i--) for (j = n- 1 ; j > i; j--) if (arr[i] > arr[j] && lds[i] < lds[j] + 1 ) lds[i] = lds[j] + 1 ; /* Return the maximum value of lis[i] + lds[i] - 1*/ int max = lis[ 0 ] + lds[ 0 ] - 1 ; for (i = 1 ; i < n; i++) if (lis[i] + lds[i] - 1 > max) max = lis[i] + lds[i] - 1 ; return max; } public static void main (String[] args) { int arr[] = { 0 , 8 , 4 , 12 , 2 , 10 , 6 , 14 , 1 , 9 , 5 , 13 , 3 , 11 , 7 , 15 }; int n = arr.length; System.out.println( "Length of LBS is " + lbs( arr, n )); } } |
Python3
# Dynamic Programming implementation of longest bitonic subsequence problem """ lbs() returns the length of the Longest Bitonic Subsequence in arr[] of size n. The function mainly creates two temporary arrays lis[] and lds[] and returns the maximum lis[i] + lds[i] - 1. lis[i] ==> Longest Increasing subsequence ending with arr[i] lds[i] ==> Longest decreasing subsequence starting with arr[i] """ def lbs(arr): n = len (arr) # allocate memory for LIS[] and initialize LIS values as 1 # for all indexes lis = [ 1 for i in range (n + 1 )] # Compute LIS values from left to right for i in range ( 1 , n): for j in range ( 0 , i): if ((arr[i] > arr[j]) and (lis[i] < lis[j] + 1 )): lis[i] = lis[j] + 1 # allocate memory for LDS and initialize LDS values for # all indexes lds = [ 1 for i in range (n + 1 )] # Compute LDS values from right to left for i in reversed ( range (n - 1 )): #loop from n-2 downto 0 for j in reversed ( range (i - 1 ,n)): #loop from n-1 downto i-1 if (arr[i] > arr[j] and lds[i] < lds[j] + 1 ): lds[i] = lds[j] + 1 # Return the maximum value of (lis[i] + lds[i] - 1) maximum = lis[ 0 ] + lds[ 0 ] - 1 for i in range ( 1 , n): maximum = max ((lis[i] + lds[i] - 1 ), maximum) return maximum # Driver program to test the above function arr = [ 0 , 8 , 4 , 12 , 2 , 10 , 6 , 14 , 1 , 9 , 5 , 13 , 3 , 11 , 7 , 15 ] print ( "Length of LBS is" ,lbs(arr)) # This code is contributed by Nikhil Kumar Singh(nickzuck_007) |
C#
/* Dynamic Programming implementation in C# for longest bitonic subsequence problem */ using System; class LBS { /* lbs() returns the length of the Longest Bitonic Subsequence in arr[] of size n. The function mainly creates two temporary arrays lis[] and lds[] and returns the maximum lis[i] + lds[i] - 1. lis[i] ==> Longest Increasing subsequence ending with arr[i] lds[i] ==> Longest decreasing subsequence starting with arr[i] */ static int lbs( int [] arr, int n) { int i, j; /* Allocate memory for LIS[] and initialize LIS values as 1 for all indexes */ int [] lis = new int [n]; for (i = 0; i < n; i++) lis[i] = 1; /* Compute LIS values from left to right */ for (i = 1; i < n; i++) for (j = 0; j < i; j++) if (arr[i] > arr[j] && lis[i] < lis[j] + 1) lis[i] = lis[j] + 1; /* Allocate memory for lds and initialize LDS values for all indexes */ int [] lds = new int [n]; for (i = 0; i < n; i++) lds[i] = 1; /* Compute LDS values from right to left */ for (i = n - 2; i >= 0; i--) for (j = n - 1; j > i; j--) if (arr[i] > arr[j] && lds[i] < lds[j] + 1) lds[i] = lds[j] + 1; /* Return the maximum value of lis[i] + lds[i] - 1*/ int max = lis[0] + lds[0] - 1; for (i = 1; i < n; i++) if (lis[i] + lds[i] - 1 > max) max = lis[i] + lds[i] - 1; return max; } // Driver code public static void Main() { int [] arr = { 0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15 }; int n = arr.Length; Console.WriteLine( "Length of LBS is " + lbs(arr, n)); } } // This code is contributed by vt_m. |
PHP
<?php // Dynamic Programming implementation // of longest bitonic subsequence problem /* lbs() returns the length of the Longest Bitonic Subsequence in arr[] of size n. The function mainly creates two temporary arrays lis[] and lds[] and returns the maximum lis[i] + lds[i] - 1. lis[i] ==> Longest Increasing subsequence ending with arr[i] lds[i] ==> Longest decreasing subsequence starting with arr[i] */ function lbs(& $arr , $n ) { /* Allocate memory for LIS[] and initialize LIS values as 1 for all indexes */ $lis = array_fill (0, $n , NULL); for ( $i = 0; $i < $n ; $i ++) $lis [ $i ] = 1; /* Compute LIS values from left to right */ for ( $i = 1; $i < $n ; $i ++) for ( $j = 0; $j < $i ; $j ++) if ( $arr [ $i ] > $arr [ $j ] && $lis [ $i ] < $lis [ $j ] + 1) $lis [ $i ] = $lis [ $j ] + 1; /* Allocate memory for lds and initialize LDS values for all indexes */ $lds = array_fill (0, $n , NULL); for ( $i = 0; $i < $n ; $i ++) $lds [ $i ] = 1; /* Compute LDS values from right to left */ for ( $i = $n - 2; $i >= 0; $i --) for ( $j = $n - 1; $j > $i ; $j --) if ( $arr [ $i ] > $arr [ $j ] && $lds [ $i ] < $lds [ $j ] + 1) $lds [ $i ] = $lds [ $j ] + 1; /* Return the maximum value of lis[i] + lds[i] - 1*/ $max = $lis [0] + $lds [0] - 1; for ( $i = 1; $i < $n ; $i ++) if ( $lis [ $i ] + $lds [ $i ] - 1 > $max ) $max = $lis [ $i ] + $lds [ $i ] - 1; return $max ; } // Driver Code $arr = array (0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15); $n = sizeof( $arr ); echo "Length of LBS is " . lbs( $arr , $n ); // This code is contributed by ita_c ?> |
Javascript
<script> /* Dynamic Programming implementation in JavaScript for longest bitonic subsequence problem */ /* lbs() returns the length of the Longest Bitonic Subsequence in arr[] of size n. The function mainly creates two temporary arrays lis[] and lds[] and returns the maximum lis[i] + lds[i] - 1. lis[i] ==> Longest Increasing subsequence ending with arr[i] lds[i] ==> Longest decreasing subsequence starting with arr[i] */ function lbs(arr,n) { let i, j; /* Allocate memory for LIS[] and initialize LIS values as 1 for all indexes */ let lis = new Array(n) for (i = 0; i < n; i++) lis[i] = 1; /* Compute LIS values from left to right */ for (i = 1; i < n; i++) for (j = 0; j < i; j++) if (arr[i] > arr[j] && lis[i] < lis[j] + 1) lis[i] = lis[j] + 1; /* Allocate memory for lds and initialize LDS values for all indexes */ let lds = new Array(n); for (i = 0; i < n; i++) lds[i] = 1; /* Compute LDS values from right to left */ for (i = n-2; i >= 0; i--) for (j = n-1; j > i; j--) if (arr[i] > arr[j] && lds[i] < lds[j] + 1) lds[i] = lds[j] + 1; /* Return the maximum value of lis[i] + lds[i] - 1*/ let max = lis[0] + lds[0] - 1; for (i = 1; i < n; i++) if (lis[i] + lds[i] - 1 > max) max = lis[i] + lds[i] - 1; return max; } let arr=[0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15] let n = arr.length; document.write( "Length of LBS is " + lbs( arr, n )); // This code is contributed by avanitrachhadiya2155 </script> |
Length of LBS is 7
Time Complexity: O(n^2)
Auxiliary Space: O(n)
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above
Please Login to comment...