Maximum product of an increasing subsequence

Given an array of numbers, find the maximum product formed by multiplying numbers of an increasing subsequence of that array.

Note: A single number is supposed to be an increasing subsequence of size 1.

Examples:

Input : arr[] = { 3, 100, 4, 5, 150, 6 }
Output : 45000
Maximum product is 45000 formed by the 
increasing subsequence 3, 100, 150. Note
that the longest increasing subsequence 
is different {3, 4, 5, 6}

Input : arr[] = { 10, 22, 9, 33, 21, 50, 41, 60 }
Output : 21780000
Maximum product is 21780000 formed by the 
increasing subsequence 10, 22, 33, 50, 60.
          



Prerequisite : Longest Increasing Subsequence

Approach: Use a dynamic approach to maintain a table mpis[]. The value of mpis[i] stores product maximum product increasing subsequence ending with arr[i]. Initially all the values of increasing subsequence table are initialized to arr[i]. We use recursive approach similar to LIS problem to find the result.

C++

/* Dynamic programming C++ implementation of maximum 
   product of an increasing subsequence */
#include <bits/stdc++.h>
#define ll long long int
using namespace std;
  
// Returns product of maximum product increasing
// subsequence.
ll lis(ll arr[], ll n)
{
    ll mpis[n];
  
    /* Initialize MPIS values */
    for (int i = 0; i < n; i++)
        mpis[i] = arr[i];
  
    /* Compute optimized MPIS values considering
       every element as ending element of sequence */
    for (int i = 1; i < n; i++)
        for (int j = 0; j < i; j++)
            if (arr[i] > arr[j] && mpis[i] < (mpis[j] * arr[i]))
                mpis[i] = mpis[j] * arr[i];
  
    /* Pick maximum of all product values */
    return *max_element(mpis, mpis + n);
}
  
/* Driver program to test above function */
int main()
{
    ll arr[] = { 3, 100, 4, 5, 150, 6 };
    ll n = sizeof(arr) / sizeof(arr[0]);
    printf("%lld", lis(arr, n));
    return 0;
}

Java

/* Dynamic programming Java implementation 
of maximum product of an increasing 
subsequence */
import java.util.Arrays;
import java.util.Collections;
  
class GFG {
  
    // Returns product of maximum product
    // increasing subsequence.
    static int lis(int[] arr, int n)
    {
        int[] mpis = new int[n];
        int max = Integer.MIN_VALUE;
          
        /* Initialize MPIS values */
        for (int i = 0; i < n; i++)
            mpis[i] = arr[i];
  
        /* Compute optimized MPIS values 
        considering every element as ending
        element of sequence */
        for (int i = 1; i < n; i++)
            for (int j = 0; j < i; j++)
                if (arr[i] > arr[j] && mpis[i] 
                         < (mpis[j] * arr[i]))
                    mpis[i] = mpis[j] * arr[i];
  
        /* Pick maximum of all product values 
        using for loop*/
        for (int k = 0; k < mpis.length; k++)
        {
            if (mpis[k] > max) {
                max = mpis[k];
            }
        }
          
        return max;
    }
  
    // Driver program to test above function
    static public void main(String[] args)
    {
  
        int[] arr = { 3, 100, 4, 5, 150, 6 };
        int n = arr.length;
  
        System.out.println(lis(arr, n));
    }
}
  
// This code is contributed by parashar.

Python3

# Dynamic programming Python3 implementation
# of maximum product of an increasing
# subsequence 
  
# Returns product of maximum product
# increasing subsequence.
def lis (arr, n ):
    mpis =[0] * (n)
      
    # Initialize MPIS values
    for i in range(n):
        mpis[i] = arr[i]
      
    # Compute optimized MPIS values
    # considering every element as 
    # ending element of sequence
    for i in range(1, n):
        for j in range(i):
            if (arr[i] > arr[j] and
                    mpis[i] < (mpis[j] * arr[i])):
                        mpis[i] = mpis[j] * arr[i]
      
    # Pick maximum of all product values 
    return max(mpis)
  
# Driver code to test above function
arr = [3, 100, 4, 5, 150, 6]
n = len(arr)
print( lis(arr, n))
  
# This code is contributed by "Sharad_Bhardwaj".

C#

/* Dynamic programming C# implementation 
of maximum product of an increasing 
subsequence */
using System;
using System.Linq;
  
public class GFG {
  
    // Returns product of maximum product
    // increasing subsequence.
    static long lis(long[] arr, long n)
    {
        long[] mpis = new long[n];
  
        /* Initialize MPIS values */
        for (int i = 0; i < n; i++)
            mpis[i] = arr[i];
  
        /* Compute optimized MPIS values considering
        every element as ending element of sequence */
        for (int i = 1; i < n; i++)
            for (int j = 0; j < i; j++)
                if (arr[i] > arr[j] && mpis[i] < (mpis[j] * arr[i]))
                    mpis[i] = mpis[j] * arr[i];
  
        /* Pick maximum of all product values */
        return mpis.Max();
    }
  
    /* Driver program to test above function */
    static public void Main()
    {
  
        long[] arr = { 3, 100, 4, 5, 150, 6 };
        long n = arr.Length;
  
        Console.WriteLine(lis(arr, n));
    }
}
  
// This code is contributed by vt_m.


Output:

 45000

Time Complexity: O(n^2)
Auxiliary Space : O(n)



My Personal Notes arrow_drop_up


Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Improved By : parashar

Article Tags :


Be the First to upvote.


Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.