Skip to content
Related Articles

Related Articles

C++ Program for Longest Increasing Subsequence
  • Difficulty Level : Medium
  • Last Updated : 10 Feb, 2021

The Longest Increasing Subsequence (LIS) problem is to find the length of the longest subsequence of a given sequence such that all elements of the subsequence are sorted in increasing order. For example, the length of LIS for {10, 22, 9, 33, 21, 50, 41, 60, 80} is 6 and LIS is {10, 22, 33, 50, 60, 80}. 
 

longest-increasing-subsequence

Examples: 
 

Input  : arr[] = {3, 10, 2, 1, 20}
Output : Length of LIS = 3
The longest increasing subsequence is 3, 10, 20

Input  : arr[] = {3, 2}
Output : Length of LIS = 1
The longest increasing subsequences are {3} and {2}

Input : arr[] = {50, 3, 10, 7, 40, 80}
Output : Length of LIS = 4
The longest increasing subsequence is {3, 7, 40, 80}

Overlapping Subproblems: 
Considering the above implementation, following is recursion tree for an array of size 4. lis(n) gives us the length of LIS for arr[]. 
 

              lis(4)
        /        |     
      lis(3)    lis(2)   lis(1)
     /           /
   lis(2) lis(1) lis(1)
   /
lis(1)

We can see that there are many subproblems which are solved again and again. So this problem has Overlapping Substructure property and recomputation of same subproblems can be avoided by either using Memoization or Tabulation. Following is a tabulated implementation for the LIS problem.
 

C++




/* Dynamic Programming C/C++ implementation of LIS problem */
#include <stdio.h>
#include <stdlib.h>
 
/* lis() returns the length of the longest increasing
  subsequence in arr[] of size n */
int lis(int arr[], int n)
{
    int *lis, i, j, max = 0;
    lis = (int*)malloc(sizeof(int) * n);
 
    /* Initialize LIS values for all indexes */
    for (i = 0; i < n; i++)
        lis[i] = 1;
 
    /* Compute optimized LIS values in bottom up manner */
    for (i = 1; i < n; i++)
        for (j = 0; j < i; j++)
            if (arr[i] > arr[j] && lis[i] < lis[j] + 1)
                lis[i] = lis[j] + 1;
 
    /* Pick maximum of all LIS values */
    for (i = 0; i < n; i++)
        if (max < lis[i])
            max = lis[i];
 
    /* Free memory to avoid memory leak */
    free(lis);
 
    return max;
}
 
/* Driver program to test above function */
int main()
{
    int arr[] = { 10, 22, 9, 33, 21, 50, 41, 60 };
    int n = sizeof(arr) / sizeof(arr[0]);
    printf("Length of lis is %d\n", lis(arr, n));
    return 0;
}

Java




/* Dynamic Programming Java implementation
of LIS problem */
import java.util.*;
 
class GFG
{
 
    /*
    * lis() returns the length of the longest
    * increasing subsequence in arr[] of size n
    */
    static int lis(int[] arr, int n)
    {
        int max = 0;
        int[] lst = new int[n];
 
        // initialize LIS values for all indexes
        Arrays.fill(lst, 1);
 
        /* Compute optimized LIS values
        in bottom up manner */
        for (int i = 1; i < n; i++)
        {
            for (int j = 0; j < i; j++)
            {
                if (arr[i] > arr[j] &&
                    lst[i] < lst[j] + 1)
                    lst[i] = lst[j] + 1;
            }
        }
 
        /* Pick maximum of all LIS values */
        for (int i = 0; i < n; i++)
            if (max < lst[i])
                max = lst[i];
 
        return max;
    }
 
    // Driver Code
    public static void main(String[] args)
    {
        int[] arr = { 10, 22, 9, 33, 21, 50, 41, 60 };
        int n = arr.length;
        System.out.println("Length of lis is " +
                                   lis(arr, n));
    }
}
 
// This code is contributed by
// sanjeev2552

Python3




# Dyanmic Programming python3
# implementation of LIS problem
 
# lis() returns the length of the
# longest increasing subsequence
# in arr[] of size n
def lis(arr, n):
    i, j, maxm = 0, 0, 0
     
    # initialize LIS values for all indexes
    lst = [1 for s in range(n)]
     
    for i in range(1, n):
        for j in range(0, i):
            if (arr[i] > arr[j] and
                lst[i] < lst[j] + 1):
                lst[i] = lst[j] + 1
     
    # Pick maximum of all LIS values
    for i in range(0, n):
        if maxm < lst[i]:
            maxm = lst[i]
     
    return maxm
 
# Driver Code
arr = [10, 22, 9, 33, 21, 50, 41, 60]
n = len(arr)
print("Length of lst is", lis(arr, n))
 
# This code is contributed
# by Mohit kumar 29

C#




/* Dynamic Programming Java implementation
of LIS problem */
using System;
public class GFG
{
 
  /*
    * lis() returns the length of the longest 
    * increasing subsequence in arr[] of size n
    */
  static int lis(int[] arr, int n) 
  {
    int max = 0;
    int[] lst = new int[n];
 
    // initialize LIS values for all indexes
    Array.Fill(lst, 1);
 
    /* Compute optimized LIS values 
        in bottom up manner */
    for (int i = 1; i < n; i++) 
    {
      for (int j = 0; j < i; j++) 
      {
        if (arr[i] > arr[j] && lst[i] < lst[j] + 1)
        
          lst[i] = lst[j] + 1;
        }
      }
    }
 
    /* Pick maximum of all LIS values */
    for (int i = 0; i < n; i++)
      if (max < lst[i])
        max = lst[i];
    return max;
  }
 
  // Driver code
  static public void Main ()
  {
    int[] arr = { 10, 22, 9, 33, 21, 50, 41, 60 };
    int n = arr.Length;
    Console.WriteLine("Length of lis is " +  lis(arr, n));
  }
}
 
// This code is contributed by avanitrachhadiya2155
Output: 
Length of lis is 5

 

Please refer complete article on Dynamic Programming | Set 3 (Longest Increasing Subsequence) for more details!
 

Want to learn from the best curated videos and practice problems, check out the C++ Foundation Course for Basic to Advanced C++ and C++ STL Course for foundation plus STL.



My Personal Notes arrow_drop_up
Recommended Articles
Page :