Give a complete graph with N-vertices. The task is to find out the maximum number of edge-disjoint spanning tree possible.
Edge-disjoint Spanning Tree is a spanning tree where no two trees in the set have an edge in common.
Examples:
Input : N = 4
Output : 2
Input : N = 5
Output : 2
The maximum number of possible Edge-Disjoint Spanning tree from a complete graph with N vertices can be given as,
Max Edge-disjoint spanning tree = floor(N / 2)
Let’s look at some examples:
Example 1:
Complete graph with 4 vertices

All possible Edge-disjoint spanning trees for the above graph are:

A

B
Example 2:
Complete graph with 5 vertices

All possible Edge-disjoint spanning trees for the above graph are:

A

B
Implementation: Below is the program to find the maximum number of edge-disjoint spanning trees possible.
C++
#include <bits/stdc++.h>
using namespace std;
float edgeDisjoint( int n)
{
float result = 0;
result = floor (n / 2);
return result;
}
int main()
{
int n = 4;
cout << edgeDisjoint(n);
return 0;
}
|
Java
import java.io.*;
class GFG
{
static double edgeDisjoint( int n)
{
double result = 0 ;
result = Math.floor(n / 2 );
return result;
}
public static void main(String[] args)
{
int n = 4 ;
System.out.println(( int )edgeDisjoint(n));
}
}
|
Python3
import math
def edgeDisjoint(n):
result = 0
result = math.floor(n / 2 )
return result
if __name__ = = "__main__" :
n = 4
print ( int (edgeDisjoint(n)))
|
C#
using System;
class GFG
{
static double edgeDisjoint( double n)
{
double result = 0;
result = Math.Floor(n / 2);
return result;
}
public static void Main()
{
int n = 4;
Console.Write(edgeDisjoint(n));
}
}
|
PHP
<?php
function edgeDisjoint( $n )
{
$result = 0;
$result = floor ( $n / 2);
return $result ;
}
$n = 4;
echo edgeDisjoint( $n );
?>
|
Javascript
<script>
function edgeDisjoint(n)
{
var result = 0;
result = Math.floor(n / 2);
return result;
}
var n = 4;
document.write( edgeDisjoint(n));
</script>
|
Time Complexity: O(1)
Auxiliary Space: O(1)
Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!
Last Updated :
01 Feb, 2023
Like Article
Save Article