Skip to content
Related Articles

Related Articles

Maximum modified Array sum possible by choosing elements as per the given conditions
  • Last Updated : 17 Mar, 2021

Given an array arr[] of size N, the task is to find the maximum possible sum of the array elements such that the element can be chosen as per the below conditions:

  • For each index i the value of the element is arr[i], then we can add any element from 1 to min(N, arr[i]) into the sum or else leave that element.
  • If some element is already added to the sum, then we can not add the same element again to the sum.

Examples:

Input: arr[] = {1, 2, 2, 4}
Output: 7
Explanation: 
Initially, the total sum is 0. 
Sum after adding element at index 1 to sum = 1. Elements added to sum = {1} 
Sum after adding element at index 2 to sum = 3. Elements added to sum = {1, 2} 
Now, coming at index 3 we can not add any element from (1 to 2) to the sum because we have already added the elements {1, 2} into the sum. So, leave the element at index 3.
Then add the element at index 4 to sum since 4 was not added to sum before therefore the maximum sum we can get is 3+4=7.

Input: arr[] = {4, 4, 1, 5}
Output: 13

Approach: This problem can be solved using Greedy Technique. Below are the steps:

  1. Sort the elements of the array in ascending order.
  2. Maintain the maximum possible number (say maxPossible) which can be added to the total sum.
  3. Initialise maxPossible with the maximum element of the array and add it to the total sum.
  4. Traverse the array from the end to the beginning and check if the given element value has been added to the total sum before or not.
  5. If the element value has been added before then we will add (element – 1) to the total sum and if the element value is less than maxPossible then we will add that number and change the maxPossible to the element value.
  6. Print the value of total sum after the above steps.

Below is the implementation of the above approach:



C++




// C++ program for the above approach
#include <bits/stdc++.h>
#define ll long long
using namespace std;
 
// Function that finds the maximum sum
// of the array elements according to
// the given condition
ll findMaxValue(int arr[], int n)
{
    // Sort the array
    sort(arr, arr + n);
 
    // Take the max value from the array
    ll ans = arr[n - 1];
    ll maxPossible = arr[n - 1];
 
    // Iterate from the end of the array
    for (int i = n - 2; i >= 0; --i) {
 
        if (maxPossible > 0) {
 
            // Check for the number had
            // come before or not
            if (arr[i] >= maxPossible) {
 
                // Take the value which is
                // not occured already
                ans += (maxPossible - 1);
                maxPossible = maxPossible - 1;
            }
            else {
 
                // Change max to new value
                maxPossible = arr[i];
                ans += maxPossible;
            }
        }
    }
 
    // Return the maximum sum
    return ans;
}
 
// Driver Code
int main()
{
 
    // Given array arr[]
    int arr[] = { 4, 4, 1, 5 };
    int n = sizeof(arr) / sizeof(arr[0]);
 
    // Function Call
    cout << findMaxValue(arr, n);
}

Java




// Java program for the above approach
import java.util.*;
class GFG{
 
// Function that finds the maximum sum
// of the array elements according to
// the given condition
static int findMaxValue(int arr[], int n)
{
    // Sort the array
    Arrays.sort(arr);
 
    // Take the max value from the array
    int ans = arr[n - 1];
    int maxPossible = arr[n - 1];
 
    // Iterate from the end of the array
    for (int i = n - 2; i >= 0; --i)
    {
        if (maxPossible > 0)
        {
 
            // Check for the number had
            // come before or not
            if (arr[i] >= maxPossible)
            {
 
                // Take the value which is
                // not occured already
                ans += (maxPossible - 1);
                maxPossible = maxPossible - 1;
            }
            else
            {
 
                // Change max to new value
                maxPossible = arr[i];
                ans += maxPossible;
            }
        }
    }
 
    // Return the maximum sum
    return ans;
}
 
// Driver Code
public static void main(String[] args)
{
 
    // Given array arr[]
    int arr[] = { 4, 4, 1, 5 };
    int n = arr.length;
 
    // Function Call
    System.out.print(findMaxValue(arr, n));
}
}
 
// This code is contributed by sapnasingh4991

Python3




# Python3 program for the above approach
 
# Function that finds the maximum sum
# of the array elements according to
# the given condition
def findMaxValue(arr, n):
     
    # Sort the array
    arr.sort()
 
    # Take the max value from the array
    ans = arr[n - 1]
    maxPossible = arr[n - 1]
     
    # Iterate from the end of the array
    for i in range(n - 2, -1, -1):
        if (maxPossible > 0):
             
            # Check for the number had
            # come before or not
            if (arr[i] >= maxPossible):
                 
                # Take the value which is
                # not occured already
                ans += (maxPossible - 1)
                maxPossible = maxPossible - 1
            else:
                 
                # Change max to new value
                maxPossible = arr[i]
                ans += maxPossible
                 
    # Return the maximum sum
    return ans
 
# Driver code
if __name__=='__main__':
     
    # Given array arr[]
    arr = [ 4, 4, 1, 5 ]
    n = len(arr)
 
    # Function call
    print(findMaxValue(arr,n))
 
# This code is contributed by rutvik_56

C#




// C# program for the above approach
using System;
class GFG{
 
// Function that finds the maximum sum
// of the array elements according to
// the given condition
static int findMaxValue(int []arr, int n)
{
    // Sort the array
    Array.Sort(arr);
 
    // Take the max value from the array
    int ans = arr[n - 1];
    int maxPossible = arr[n - 1];
 
    // Iterate from the end of the array
    for (int i = n - 2; i >= 0; --i)
    {
        if (maxPossible > 0)
        {
 
            // Check for the number had
            // come before or not
            if (arr[i] >= maxPossible)
            {
 
                // Take the value which is
                // not occured already
                ans += (maxPossible - 1);
                maxPossible = maxPossible - 1;
            }
            else
            {
 
                // Change max to new value
                maxPossible = arr[i];
                ans += maxPossible;
            }
        }
    }
 
    // Return the maximum sum
    return ans;
}
 
// Driver Code
public static void Main(String[] args)
{
 
    // Given array []arr
    int []arr = { 4, 4, 1, 5 };
    int n = arr.Length;
 
    // Function Call
    Console.Write(findMaxValue(arr, n));
}
}
 
// This code is contributed by sapnasingh4991

Javascript




<script>
 
// JavaScript program for the above approach
 
// Function that finds the maximum sum
// of the array elements according to
// the given condition
function findMaxValue(arr, n)
{
    // Sort the array
    arr.sort((a, b) => a - b);
 
    // Take the max value from the array
    let ans = arr[n - 1];
    let maxPossible = arr[n - 1];
 
    // Iterate from the end of the array
    for (let i = n - 2; i >= 0; --i) {
 
        if (maxPossible > 0) {
 
            // Check for the number had
            // come before or not
            if (arr[i] >= maxPossible) {
 
                // Take the value which is
                // not occured already
                ans += (maxPossible - 1);
                maxPossible = maxPossible - 1;
            }
            else {
 
                // Change max to new value
                maxPossible = arr[i];
                ans += maxPossible;
            }
        }
    }
 
    // Return the maximum sum
    return ans;
}
 
// Driver Code
 
    // Given array arr[]
    let arr = [ 4, 4, 1, 5 ];
    let n = arr.length;
 
    // Function Call
    document.write(findMaxValue(arr, n));
 
 
// This code is contributed by Surbhi Tyagi.
 
</script>
Output: 
13

Time Complexity: O(N)
Auxiliary Space: O(1) 
 

Attention reader! Don’t stop learning now. Get hold of all the important mathematical concepts for competitive programming with the Essential Maths for CP Course at a student-friendly price. To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

My Personal Notes arrow_drop_up
Recommended Articles
Page :