Skip to content
Related Articles

Related Articles

Matplotlib.pyplot.annotate() in Python
  • Last Updated : 12 Apr, 2020

Matplotlib is a library in Python and it is numerical – mathematical extension for NumPy library. Pyplot is a state-based interface to a Matplotlib module which provides a MATLAB-like interface.

matplotlib.pyplot.annotate() Function

The annotate() function in pyplot module of matplotlib library is used to annotate the point xy with text s.

Syntax: angle_spectrum(x, Fs=2, Fc=0, window=mlab.window_hanning, pad_to=None, sides=’default’, **kwargs)

Parameters: This method accept the following parameters that are described below:

  • s: This parameter is the text of the annotation.
  • xy: This parameter is the point (x, y) to annotate.
  • xytext: This parameter is an optional parameter. It is The position (x, y) to place the text at.
  • xycoords: This parameter is also an optional parameter and contains the string value.
  • textcoords: This parameter contains the string value.Coordinate system that xytext is given, which may be different than the coordinate system used for xy
  • arrowprops : This parameter is also an optional parameter and contains dict type.Its default value is None.
  • annotation_clip : This parameter is also an optional parameter and contains boolean value.Its default value is None which behaves as True.

Returns: This method returns the annotation.



Below examples illustrate the matplotlib.pyplot.annotate() function in matplotlib.pyplot:

Example #1:




# Implementation of matplotlib.pyplot.annotate()
# function
  
import matplotlib.pyplot as plt
import numpy as np
  
  
fig, geeeks = plt.subplots()
  
t = np.arange(0.0, 5.0, 0.001)
s = np.cos(3 * np.pi * t)
line = geeeks.plot(t, s, lw = 2)
  
# Annotation
geeeks.annotate('Local Max', xy =(3.3, 1),
                xytext =(3, 1.8), 
                arrowprops = dict(facecolor ='green',
                                  shrink = 0.05),)
  
geeeks.set_ylim(-2, 2)
  
# Plot the Annotation in the graph
plt.show()

Output:

Example #2:




# Implementation of matplotlib.pyplot.annotate()
# function
  
import numpy as np
import matplotlib.pyplot as plt
  
x = np.arange(0, 10, 0.005)
y = np.exp(-x / 3.) * np.sin(3 * np.pi * x)
  
fig, ax = plt.subplots()
ax.plot(x, y)
ax.set_xlim(0, 10)
ax.set_ylim(-1, 1)
  
# Setting up the parameters
xdata, ydata = 5, 0
xdisplay, ydisplay = ax.transData.transform((xdata, ydata))
  
bbox = dict(boxstyle ="round", fc ="0.8")
arrowprops = dict(
    arrowstyle = "->",
    connectionstyle = "angle, angleA = 0, angleB = 90,\
    rad = 10")
  
offset = 72
  
# Annotation
ax.annotate('data = (%.1f, %.1f)'%(xdata, ydata),
            (xdata, ydata), xytext =(-2 * offset, offset),
            textcoords ='offset points',
            bbox = bbox, arrowprops = arrowprops)
  
  
disp = ax.annotate('display = (%.1f, %.1f)'%(xdisplay, ydisplay),
            (xdisplay, ydisplay), xytext =(0.5 * offset, -offset),
            xycoords ='figure pixels',
            textcoords ='offset points',
            bbox = bbox, arrowprops = arrowprops)
  
# To display the annotation
plt.show()

Output:

 Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.  

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course. And to begin with your Machine Learning Journey, join the Machine Learning – Basic Level Course

My Personal Notes arrow_drop_up
Recommended Articles
Page :