Lowest Common Ancestor in a Binary Tree | Set 3 (Using RMQ)
Given a rooted tree, and two nodes are in the tree, find the Lowest common ancestor of both the nodes. The LCA for two nodes u and v is defined as the farthest node from the root that is the ancestor to both u and v.
Prerequisites: LCA | SET 1
Example for the above figure :
Input : 4 5 Output : 2 Input : 4 7 Output : 1
Converting LCA to RMQ(Range Minimum Query):
Take an array named E[], which stores the order of dfs traversal i.e. the order in which the nodes are covered during the dfs traversal. For example,
The tree given above has dfs traversal in the order: 1-2-4-2-5-2-1-3. Take another array L[], in which L[i] is the level of node E[i]. And the array H[], which stores the index of the first occurrence of ith node in the array E[]. So, for the above tree, E[] = {1, 2, 4, 2, 5, 2, 1, 3} L[] = {1, 2, 3, 2, 3, 2, 1, 2} H[] = {0, 1, 7, 2, 4}
Note that the arrays E and L are with one-based indexing but the array H has zero-based indexing.
Now, to find the LCA(4, 3), first, use the array H and find the indices at which 4 and 3 are found in E i.e. H[4] and H[3]. So, the indices come out to be 2 and 7. Now, look at the subarray L[2 : 7], and find the minimum in this subarray which is 1 (at the 6th index), and the corresponding element in the array E i.e. E[6] is the LCA(4, 3).
To understand why this works, take LCA(4, 3) again. The path by which one can reach node 3 from node 4 is the subarray E[2 : 7]. And, if there is a node with the lowest level in this path, then it can simply be claimed to be the LCA(4, 3).
Now, the problem is to find the minimum in the subarray E[H[u]….H[v]] (assuming that H[u] >= H[v]). And, that could be done using a segment tree or sparse table. Below is the code using the segment tree.
Implementation:
C++
// CPP code to find LCA of given // two nodes in a tree #include <bits/stdc++.h> #define sz(x) x.size() #define pb push_back #define left 2 * i + 1 #define right 2 * i + 2 using namespace std; const int maxn = 100005; // the graph vector<vector< int >> g(maxn); // level of each node int level[maxn]; vector< int > e; vector< int > l; int h[maxn]; // the segment tree int st[5 * maxn]; // adding edges to the graph(tree) void add_edge( int u, int v) { g[u].pb(v); g[v].pb(u); } // assigning level to nodes void leveling( int src) { for ( int i = 0; i < sz(g[src]); i++) { int des = g[src][i]; if (!level[des]) { level[des] = level[src] + 1; leveling(des); } } } bool visited[maxn]; // storing the dfs traversal // in the array e void dfs( int src) { e.pb(src); visited[src] = 1; for ( int i = 0; i < sz(g[src]); i++) { int des = g[src][i]; if (!visited[des]) { dfs(des); e.pb(src); } } } // making the array l void setting_l( int n) { for ( int i = 0; i < sz(e); i++) l.pb(level[e[i]]); } // making the array h void setting_h( int n) { for ( int i = 0; i <= n; i++) h[i] = -1; for ( int i = 0; i < sz(e); i++) { // if is already stored if (h[e[i]] == -1) h[e[i]] = i; } } // Range minimum query to return the index // of minimum in the subarray L[qs:qe] int RMQ( int ss, int se, int qs, int qe, int i) { if (ss > se) return -1; // out of range if (se < qs || qe < ss) return -1; // in the range if (qs <= ss && se <= qe) return st[i]; int mid = (ss + se) >> 1; int st = RMQ(ss, mid, qs, qe, left); int en = RMQ(mid + 1, se, qs, qe, right); if (st != -1 && en != -1) { if (l[st] < l[en]) return st; return en; } else if (st != -1) return st; else if (en != -1) return en; } // constructs the segment tree void SegmentTreeConstruction( int ss, int se, int i) { if (ss > se) return ; if (ss == se) // leaf { st[i] = ss; return ; } int mid = (ss + se) >> 1; SegmentTreeConstruction(ss, mid, left); SegmentTreeConstruction(mid + 1, se, right); if (l[st[left]] < l[st[right]]) st[i] = st[left]; else st[i] = st[right]; } // Function to get LCA int LCA( int x, int y) { if (h[x] > h[y]) swap(x, y); return e[RMQ(0, sz(l) - 1, h[x], h[y], 0)]; } // Driver code int main() { // n=number of nodes in the tree // q=number of queries to answer int n = 15, q = 5; // making the tree /* 1 / | \ 2 3 4 | \ 5 6 / | \ 8 7 9 (right of 5) / | \ | \ 10 11 12 13 14 | 15 */ add_edge(1, 2); add_edge(1, 3); add_edge(1, 4); add_edge(3, 5); add_edge(4, 6); add_edge(5, 7); add_edge(5, 8); add_edge(5, 9); add_edge(7, 10); add_edge(7, 11); add_edge(7, 12); add_edge(9, 13); add_edge(9, 14); add_edge(12, 15); level[1] = 1; leveling(1); dfs(1); setting_l(n); setting_h(n); SegmentTreeConstruction(0, sz(l) - 1, 0); cout << LCA(10, 15) << endl; cout << LCA(11, 14) << endl; return 0; } |
Java
// JAVA code to find LCA of given // two nodes in a tree import java.util.*; public class GFG { static int maxn = 100005 ; static int left( int i) { return ( 2 * i + 1 ); } static int right( int i) { return 2 * i + 2 ;} // the graph static Vector<Integer> []g = new Vector[maxn]; // level of each node static int []level = new int [maxn]; static Vector<Integer> e = new Vector<>(); static Vector<Integer> l= new Vector<>(); static int []h = new int [maxn]; // the segment tree static int []st = new int [ 5 * maxn]; // adding edges to the graph(tree) static void add_edge( int u, int v) { g[u].add(v); g[v].add(u); } // assigning level to nodes static void levelling( int src) { for ( int i = 0 ; i < (g[src].size()); i++) { int des = g[src].get(i); if (level[des] != 0 ) { level[des] = level[src] + 1 ; leveling(des); } } } static boolean []visited = new boolean [maxn]; // storing the dfs traversal // in the array e static void dfs( int src) { e.add(src); visited[src] = true ; for ( int i = 0 ; i < (g[src]).size(); i++) { int des = g[src].get(i); if (!visited[des]) { dfs(des); e.add(src); } } } // making the array l static void setting_l( int n) { for ( int i = 0 ; i < e.size(); i++) l.add(level[e.get(i)]); } // making the array h static void setting_h( int n) { for ( int i = 0 ; i <= n; i++) h[i] = - 1 ; for ( int i = 0 ; i < e.size(); i++) { // if is already stored if (h[e.get(i)] == - 1 ) h[e.get(i)] = i; } } // Range minimum query to return the index // of minimum in the subarray L[qs:qe] static int RMQ( int ss, int se, int qs, int qe, int i) { if (ss > se) return - 1 ; // out of range if (se < qs || qe < ss) return - 1 ; // in the range if (qs <= ss && se <= qe) return st[i]; int mid = (ss + se)/ 2 ; int st = RMQ(ss, mid, qs, qe, left(i)); int en = RMQ(mid + 1 , se, qs, qe, right(i)); if (st != - 1 && en != - 1 ) { if (l.get(st) < l.get(en)) return st; return en; } else if (st != - 1 ) return st- 2 ; else if (en != - 1 ) return en- 1 ; return 0 ; } // constructs the segment tree static void SegmentTreeConstruction( int ss, int se, int i) { if (ss > se) return ; if (ss == se) // leaf { st[i] = ss; return ; } int mid = (ss + se) / 2 ; SegmentTreeConstruction(ss, mid, left(i)); SegmentTreeConstruction(mid + 1 , se, right(i)); if (l.get(st[left(i)]) < l.get(st[right(i)])) st[i] = st[left(i)]; else st[i] = st[right(i)]; } // Function to get LCA static int LCA( int x, int y) { if (h[x] > h[y]) { int t = x; x = y; y = t; } return e.get(RMQ( 0 , l.size() - 1 , h[x], h[y], 0 )); } // Driver code public static void main(String[] args) { // n=number of nodes in the tree // q=number of queries to answer int n = 15 , q = 5 ; for ( int i = 0 ; i < g.length; i++) g[i] = new Vector<Integer>(); // making the tree /* 1 / | \ 2 3 4 | \ 5 6 / | \ 8 7 9 (right of 5) / | \ | \ 10 11 12 13 14 | 15 */ add_edge( 1 , 2 ); add_edge( 1 , 3 ); add_edge( 1 , 4 ); add_edge( 3 , 5 ); add_edge( 4 , 6 ); add_edge( 5 , 7 ); add_edge( 5 , 8 ); add_edge( 5 , 9 ); add_edge( 7 , 10 ); add_edge( 7 , 11 ); add_edge( 7 , 12 ); add_edge( 9 , 13 ); add_edge( 9 , 14 ); add_edge( 12 , 15 ); level[ 1 ] = 1 ; leveling( 1 ); dfs( 1 ); setting_l(n); setting_h(n); SegmentTreeConstruction( 0 , l.size() - 1 , 0 ); System.out.print(LCA( 10 , 15 ) + "\n" ); System.out.print(LCA( 11 , 14 ) + "\n" ); } } // This code is contributed by Rajput-Ji |
Python3
# Python code to find LCA of given # two nodes in a tree maxn = 100005 # the graph g = [[] for i in range (maxn)] # level of each node level = [ 0 ] * maxn e = [] l = [] h = [ 0 ] * maxn # the segment tree st = [ 0 ] * ( 5 * maxn) # adding edges to the graph(tree) def add_edge(u: int , v: int ): g[u].append(v) g[v].append(u) # assigning level to nodes def levelling(src: int ): for i in range ( len (g[src])): des = g[src][i] if not level[des]: level[des] = level[src] + 1 leveling(des) visited = [ False ] * maxn # storing the dfs traversal # in the array e def dfs(src: int ): e.append(src) visited[src] = True for i in range ( len (g[src])): des = g[src][i] if not visited[des]: dfs(des) e.append(src) # making the array l def setting_l(n: int ): for i in range ( len (e)): l.append(level[e[i]]) # making the array h def setting_h(n: int ): for i in range (n + 1 ): h[i] = - 1 for i in range ( len (e)): # if is already stored if h[e[i]] = = - 1 : h[e[i]] = i # Range minimum query to return the index # of minimum in the subarray L[qs:qe] def RMQ(ss: int , se: int , qs: int , qe: int , i: int ) - > int : global st if ss > se: return - 1 # out of range if se < qs or qe < ss: return - 1 # in the range if qs < = ss and se < = qe: return st[i] mid = (se + ss) >> 1 stt = RMQ(ss, mid, qs, qe, 2 * i + 1 ) en = RMQ(mid + 1 , se, qs, qe, 2 * i + 2 ) if stt ! = - 1 and en ! = - 1 : if l[stt] < l[en]: return stt return en elif stt ! = - 1 : return stt elif en ! = - 1 : return en # constructs the segment tree def segmentTreeConstruction(ss: int , se: int , i: int ): if ss > se: return if ss = = se: # leaf st[i] = ss return mid = (ss + se) >> 1 segmentTreeConstruction(ss, mid, 2 * i + 1 ) segmentTreeConstruction(mid + 1 , se, 2 * i + 2 ) if l[st[ 2 * i + 1 ]] < l[st[ 2 * i + 2 ]]: st[i] = st[ 2 * i + 1 ] else : st[i] = st[ 2 * i + 2 ] # Function to get LCA def LCA(x: int , y: int ) - > int : if h[x] > h[y]: x, y = y, x return e[RMQ( 0 , len (l) - 1 , h[x], h[y], 0 )] # Driver Code if __name__ = = "__main__" : # n=number of nodes in the tree # q=number of queries to answer n = 15 q = 5 # making the tree # /* # 1 # / | \ # 2 3 4 # | \ # 5 6 # / | \ # 8 7 9 (right of 5) # / | \ | \ # 10 11 12 13 14 # | # 15 # */ add_edge( 1 , 2 ) add_edge( 1 , 3 ) add_edge( 1 , 4 ) add_edge( 3 , 5 ) add_edge( 4 , 6 ) add_edge( 5 , 7 ) add_edge( 5 , 8 ) add_edge( 5 , 9 ) add_edge( 7 , 10 ) add_edge( 7 , 11 ) add_edge( 7 , 12 ) add_edge( 9 , 13 ) add_edge( 9 , 14 ) add_edge( 12 , 15 ) level[ 1 ] = 1 leveling( 1 ) dfs( 1 ) setting_l(n) setting_h(n) segmentTreeConstruction( 0 , len (l) - 1 , 0 ) print (LCA( 10 , 15 )) print (LCA( 11 , 14 )) # This code is contributed by # sanjeev2552 |
C#
// C# code to find LCA of given // two nodes in a tree using System; using System.Collections.Generic; public class GFG { static int maxn = 100005; static int left( int i) { return (2 * i + 1); } static int right( int i) { return 2 * i + 2;} // the graph static List< int > []g = new List< int >[maxn]; // level of each node static int []level = new int [maxn]; static List< int > e = new List< int >(); static List< int > l= new List< int >(); static int []h = new int [maxn]; // the segment tree static int []st; // adding edges to the graph(tree) static void add_edge( int u, int v) { g[u].Add(v); g[v].Add(u); } // assigning level to nodes static void leveling( int src) { for ( int i = 0; i < (g[src].Count); i++) { int des = g[src][i]; if (level[des] != 0) { level[des] = level[src] + 1; leveling(des); } } } static bool []visited = new bool [maxn]; // storing the dfs traversal // in the array e static void dfs( int src) { e.Add(src); visited[src] = true ; for ( int i = 0; i < (g[src]).Count; i++) { int des = g[src][i]; if (!visited[des]) { dfs(des); e.Add(src); } } } // making the array l static void setting_l( int n) { for ( int i = 0; i < e.Count; i++) l.Add(level[e[i]]); } // making the array h static void setting_h( int n) { for ( int i = 0; i <= n; i++) h[i] = -1; for ( int i = 0; i < e.Count; i++) { // if is already stored if (h[e[i]] == -1) h[e[i]] = i; } } // Range minimum query to return the index // of minimum in the subarray L[qs:qe] static int RMQ( int ss, int se, int qs, int qe, int i) { if (ss > se) return -1; // out of range if (se < qs || qe < ss) return -1; // in the range if (qs <= ss && se <= qe) return st[i]; int mid = (ss + se)/2 ; int sti = RMQ(ss, mid, qs, qe, left(i)); int en = RMQ(mid + 1, se, qs, qe, right(i)); if (sti != -1 && en != -1) { if (l[sti] < l[en]) return sti; return en; } else if (sti != -1) return sti-2; else if (en != -1) return en-1; return 0; } // constructs the segment tree static void SegmentTreeConstruction( int ss, int se, int i) { if (ss > se) return ; if (ss == se) // leaf { st[i] = ss; return ; } int mid = (ss + se) /2; SegmentTreeConstruction(ss, mid, left(i)); SegmentTreeConstruction(mid + 1, se, right(i)); if (l[st[left(i)]] < l[st[right(i)]]) st[i] = st[left(i)]; else st[i] = st[right(i)]; } // Function to get LCA static int LCA( int x, int y) { if (h[x] > h[y]) { int t = x; x = y; y = t; } return e[RMQ(0, l.Count - 1, h[x], h[y], 0)]; } // Driver code public static void Main(String[] args) { st = new int [5 * maxn]; // n=number of nodes in the tree // q=number of queries to answer int n = 15; for ( int i = 0; i < g.Length; i++) g[i] = new List< int >(); // making the tree /* 1 / | \ 2 3 4 | \ 5 6 / | \ 8 7 9 (right of 5) / | \ | \ 10 11 12 13 14 | 15 */ add_edge(1, 2); add_edge(1, 3); add_edge(1, 4); add_edge(3, 5); add_edge(4, 6); add_edge(5, 7); add_edge(5, 8); add_edge(5, 9); add_edge(7, 10); add_edge(7, 11); add_edge(7, 12); add_edge(9, 13); add_edge(9, 14); add_edge(12, 15); level[1] = 1; leveling(1); dfs(1); setting_l(n); setting_h(n); SegmentTreeConstruction(0, l.Count - 1, 0); Console.Write(LCA(10, 15) + "\n" ); Console.Write(LCA(11, 14) + "\n" ); } } // This code is contributed by gauravrajput1 |
Javascript
<script> // JavaScript code to find LCA of given // two nodes in a tree let maxn = 100005; function left(i) { return (2 * i + 1); } function right(i) { return 2 * i + 2;} // the graph let g = new Array(maxn); // level of each node let level = new Array(maxn); level.fill(0); let e = []; let l= []; let h = new Array(maxn); h.fill(0); // the segment tree let st = new Array(5 * maxn); st.fill(0); // adding edges to the graph(tree) function add_edge(u, v) { g[u].push(v); g[v].push(u); } // assigning level to nodes function levelling(src) { for (let i = 0; i < (g[src].length); i++) { let des = g[src][i]; if (level[des] != 0) { level[des] = level[src] + 1; levelling(des); } } } let visited = new Array(maxn); visited.fill( false ); // storing the dfs traversal // in the array e function dfs(src) { e.push(src); visited[src] = true ; for (let i = 0; i < (g[src]).length; i++) { let des = g[src][i]; if (!visited[des]) { dfs(des); e.push(src); } } } // making the array l function setting_l(n) { for (let i = 0; i < e.length; i++) l.push(level[e[i]]); } // making the array h function setting_h(n) { for (let i = 0; i <= n; i++) h[i] = -1; for (let i = 0; i < e.length; i++) { // if is already stored if (h[e[i]] == -1) h[e[i]] = i; } } // Range minimum query to return the index // of minimum in the subarray L[qs:qe] function RMQ(ss, se, qs, qe, i) { if (ss > se) return -1; // out of range if (se < qs || qe < ss) return -1; // in the range if (qs <= ss && se <= qe) return st[i]; let mid = parseInt((ss + se)/2 , 10); let St = RMQ(ss, mid, qs, qe, left(i)); let en = RMQ(mid + 1, se, qs, qe, right(i)); if (St != -1 && en != -1) { if (l[St] < l[en]) return St; return en; } else if (St != -1) return St-2; else if (en != -1) return en-1; return 0; } // constructs the segment tree function SegmentTreeConstruction(ss, se, i) { if (ss > se) return ; if (ss == se) // leaf { st[i] = ss; return ; } let mid = parseInt((ss + se) /2, 10); SegmentTreeConstruction(ss, mid, left(i)); SegmentTreeConstruction(mid + 1, se, right(i)); if (l[st[left(i)]] < l[st[right(i)]]) st[i] = st[left(i)]; else st[i] = st[right(i)]; } // Function to get LCA function LCA(x, y) { if (h[x] > h[y]) { let t = x; x = y; y = t; } return e[RMQ(0, l.length - 1, h[x], h[y], 0)]; } // n=number of nodes in the tree // q=number of queries to answer let n = 15, q = 5; for (let i = 0; i < g.length; i++) g[i] = []; // making the tree /* 1 / | \ 2 3 4 | \ 5 6 / | \ 8 7 9 (right of 5) / | \ | \ 10 11 12 13 14 | 15 */ add_edge(1, 2); add_edge(1, 3); add_edge(1, 4); add_edge(3, 5); add_edge(4, 6); add_edge(5, 7); add_edge(5, 8); add_edge(5, 9); add_edge(7, 10); add_edge(7, 11); add_edge(7, 12); add_edge(9, 13); add_edge(9, 14); add_edge(12, 15); level[1] = 1; levelling(1); dfs(1); setting_l(n); setting_h(n); SegmentTreeConstruction(0, l.length - 1, 0); document.write(LCA(10, 15) + "</br>" ); document.write(LCA(11, 14) + "</br>" ); </script> |
7 5
Time Complexity: The arrays defined are stored in O(n). The segment tree construction also takes O(n) time. The LCA function calls the function RMQ which takes O(logn) per query (as it uses the segment tree). So overall time complexity is O(n + q * logn).
Auxiliary Space: O(n)
Please Login to comment...