# Longest subsequence whose average is less than K

Given an array of N positive integers and Q queries consisting of an integer K, the task is to print the length of the longest subsequence whose average is less than K.

Examples:

Input: a[] = {1, 3, 2, 5, 4}
Query1: K = 3
Query2: K = 5

Output:
4
5
Query1: The subsequence is: {1, 3, 2, 4} or {1, 3, 2, 5}
Query2: The subsequence is: {1, 3, 2, 5, 4}

## Recommended: Please try your approach on {IDE} first, before moving on to the solution.

A Naive Approach is to generate all subsequences using power-set and check for the longest subsequence whose average is less than K.

Time Complexity: O(2N * N )

An efficient approach is to sort the array elements and find the average of elements starting from the left. Insert the average of elements computed from the left into the container(vector or arrays). Sort the container’s element and then use binary search to search for the number K in the container. The length of the longest subsequence will thus be the index number which upper_bound() returns for every query.

Below is the implementation of the above approach.

## C++

 `// C++ program to perform Q queries ` `// to find longest subsequence whose ` `// average is less than K ` `#include ` `using` `namespace` `std; ` ` `  `// Function to print the length for evey query ` `int` `longestSubsequence(``int` `a[], ``int` `n, ``int` `q[], ``int` `m) ` `{ ` ` `  `    ``// sort array of N elements ` `    ``sort(a, a + n); ` `    ``int` `sum = 0; ` ` `  `    ``// Array to store average from left ` `    ``int` `b[n]; ` ` `  `    ``for` `(``int` `i = 0; i < n; i++) { ` `        ``sum += a[i]; ` `        ``double` `av = (``double``)(sum) / (``double``)(i + 1); ` `        ``b[i] = ((``int``)(av + 1)); ` `    ``} ` ` `  `    ``// Sort array of average ` `    ``sort(b, b + n); ` ` `  `    ``// number of queries ` ` `  `    ``for` `(``int` `i = 0; i < m; i++) { ` `        ``int` `k = q[i]; ` ` `  `        ``// print answer to every query ` `        ``// using binary search ` `        ``int` `longest = upper_bound(b, b + n, k) - b; ` ` `  `        ``cout << ``"Answer to Query"` `<< i + 1 << ``": "` `             ``<< longest << endl; ` `    ``} ` `} ` ` `  `// Driver Code ` `int` `main() ` `{ ` `    ``int` `a[] = { 1, 3, 2, 5, 4 }; ` `    ``int` `n = ``sizeof``(a) / ``sizeof``(a); ` ` `  `    ``// 4 queries ` `    ``int` `q[] = { 4, 2, 1, 5 }; ` `    ``int` `m = ``sizeof``(q) / ``sizeof``(q); ` ` `  `    ``longestSubsequence(a, n, q, m); ` `    ``return` `0; ` `} `

## Java

 `// Java program to perform Q queries ` `// to find longest subsequence whose ` `// average is less than K ` `import` `java.util.Arrays; ` ` `  `class` `GFG  ` `{ ` ` `  `    ``// Function to print the length for evey query ` `    ``static` `void` `longestSubsequence(``int` `a[], ``int` `n,  ` `                                    ``int` `q[], ``int` `m) ` `    ``{ ` ` `  `        ``// sort array of N elements ` `        ``Arrays.sort(a); ` `        ``int` `sum = ``0``; ` ` `  `        ``// Array to store average from left ` `        ``int` `[]b = ``new` `int``[n]; ` ` `  `        ``for` `(``int` `i = ``0``; i < n; i++) ` `        ``{ ` `            ``sum += a[i]; ` `            ``double` `av = (``double``)(sum) / (``double``)(i + ``1``); ` `            ``b[i] = ((``int``)(av + ``1``)); ` `        ``} ` ` `  `        ``// Sort array of average ` `        ``Arrays.sort(b); ` ` `  `        ``// number of queries ` ` `  `        ``for` `(``int` `i = ``0``; i < m; i++)  ` `        ``{ ` `            ``int` `k = q[i]; ` ` `  `            ``// print answer to every query ` `            ``// using binary search ` `            ``int` `longest = upperBound(b,``0``, n, k); ` ` `  `            ``System.out.println(``"Answer to Query"` `+ (i + ``1``) +``": "` `                ``+ longest); ` `        ``} ` `    ``} ` `    ``private` `static` `int` `upperBound(``int``[] a, ``int` `low, ``int` `high, ``int` `element) ` `    ``{ ` `        ``while``(low < high) ` `        ``{ ` `            ``int` `middle = low + (high - low)/``2``; ` `            ``if``(a[middle] > element) ` `                ``high = middle; ` `            ``else` `                ``low = middle + ``1``; ` `        ``} ` `        ``return` `low; ` `    ``} ` `     `  `    ``// Driver Code ` `    ``public` `static` `void` `main(String[] args)  ` `    ``{ ` `        ``int` `a[] = { ``1``, ``3``, ``2``, ``5``, ``4` `}; ` `        ``int` `n = a.length; ` ` `  `        ``// 4 queries ` `        ``int` `q[] = { ``4``, ``2``, ``1``, ``5` `}; ` `        ``int` `m = q.length; ` ` `  `        ``longestSubsequence(a, n, q, m);  ` `    ``} ` `} ` ` `  `/* This code contributed by PrinciRaj1992 */`

## Python3

 `# Python3 program to perform Q queries to find  ` `# longest subsequence whose average is less than K  ` `import` `bisect ` ` `  `# Function to print the length for evey query  ` `def` `longestSubsequence(a, n, q, m):  ` `  `  `    ``# sort array of N elements  ` `    ``a.sort()  ` `    ``Sum` `=` `0`  ` `  `    ``# Array to store average from left  ` `    ``b ``=` `[``None``] ``*` `n  ` ` `  `    ``for` `i ``in` `range``(``0``, n):   ` `        ``Sum` `+``=` `a[i]  ` `        ``av ``=` `Sum` `/``/` `(i ``+` `1``)  ` `        ``b[i] ``=` `av ``+` `1`  ` `  `    ``# Sort array of average  ` `    ``b.sort()  ` ` `  `    ``# number of queries  ` ` `  `    ``for` `i ``in` `range``(``0``, m):   ` `        ``k ``=` `q[i]  ` ` `  `        ``# print answer to every query  ` `        ``# using binary search  ` `        ``longest ``=` `bisect.bisect_right(b, k)  ` ` `  `        ``print``(``"Answer to Query"``, i ``+` `1``, ``":"``, longest) ` ` `  `# Driver Code  ` `if` `__name__ ``=``=` `"__main__"``: ` `  `  `    ``a ``=` `[``1``, ``3``, ``2``, ``5``, ``4``]   ` `    ``n ``=` `len``(a)  ` ` `  `    ``# 4 queries  ` `    ``q ``=` `[``4``, ``2``, ``1``, ``5``]   ` `    ``m ``=` `len``(q) ` ` `  `    ``longestSubsequence(a, n, q, m)  ` `     `  `# This code is contributed by Rituraj Jain `

## C#

 `// C# program to perform Q queries ` `// to find longest subsequence whose ` `// average is less than K ` `using` `System; ` ` `  `class` `GFG ` `{ ` `     `  `    ``// Function to print the length for evey query ` `    ``static` `void` `longestSubsequence(``int` `[]a, ``int` `n,  ` `                                    ``int` `[]q, ``int` `m) ` `    ``{ ` ` `  `        ``// sort array of N elements ` `        ``Array.Sort(a); ` `        ``int` `sum = 0; ` ` `  `        ``// Array to store average from left ` `        ``int` `[]b = ``new` `int``[n]; ` ` `  `        ``for` `(``int` `i = 0; i < n; i++) ` `        ``{ ` `            ``sum += a[i]; ` `            ``double` `av = (``double``)(sum) / (``double``)(i + 1); ` `            ``b[i] = ((``int``)(av + 1)); ` `        ``} ` ` `  `        ``// Sort array of average ` `        ``Array.Sort(b); ` ` `  `        ``// number of queries ` ` `  `        ``for` `(``int` `i = 0; i < m; i++)  ` `        ``{ ` `            ``int` `k = q[i]; ` ` `  `            ``// print answer to every query ` `            ``// using binary search ` `            ``int` `longest = upperBound(b,0, n, k); ` ` `  `            ``Console.WriteLine(``"Answer to Query"` `+ (i + 1) +``": "` `                ``+ longest); ` `        ``} ` `    ``} ` `     `  `    ``private` `static` `int` `upperBound(``int``[] a, ``int` `low,  ` `                                    ``int` `high, ``int` `element) ` `    ``{ ` `        ``while``(low < high) ` `        ``{ ` `            ``int` `middle = low + (high - low)/2; ` `            ``if``(a[middle] > element) ` `                ``high = middle; ` `            ``else` `                ``low = middle + 1; ` `        ``} ` `        ``return` `low; ` `    ``} ` `     `  `    ``// Driver Code ` `    ``static` `public` `void` `Main () ` `    ``{ ` `        ``int` `[]a = { 1, 3, 2, 5, 4 }; ` `        ``int` `n = a.Length; ` ` `  `        ``// 4 queries ` `        ``int` `[]q = { 4, 2, 1, 5 }; ` `        ``int` `m = q.Length; ` ` `  `        ``longestSubsequence(a, n, q, m);  ` `    ``} ` `} ` `     `  `/* This code contributed by ajit */`

Output:

```Answer to Query1: 5
```

Time Complexity: O(N*log N + M*log N)
Auxiliary Space: O(N)

My Personal Notes arrow_drop_up Striver(underscore)79 at Codechef and codeforces D

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.

Article Tags :
Practice Tags :

Be the First to upvote.

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.