Longest sub-sequence of a binary string divisible by 3

Given a binary string S of length N, the task is to find the length of the longest sub-sequence in it which is divisible by 3. Leading zeros in the sub-sequences are allowed.

Examples:

Input: S = “1001”
Output: 4
The longest sub-sequence divisible by 3 is “1001”.
1001 = 9 which is divisible by 3.



Input: S = “1011”
Output: 3

Naive approach: Generate all the possible sub-sequences and check if they are divisible by 3. The time complexity for this will be O((2N) * N).

Efficient approach: Dynamic programming can be used to solve this problem. Let’s look at the states of DP.
DP[i][r] will store the longest sub-sequence of the substring S[i…N-1] such that it gives a remainder of (3 – r) % 3 when divided by 3.
Let’s write the recurrence relation now.

DP[i][r] = max(1 + DP[i + 1][(r * 2 + s[i]) % 3], DP[i + 1][r])

The recurrence is derived because of the following two choices:

  1. Include the current index i in the sub-sequence. Thus, the r will be updated as r = (r * 2 + s[i]) % 3.
  2. Don’t include the current index in the sub-sequence.

Below is the implementation of the above approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
#define N 100
  
int dp[N][3];
bool v[N][3];
  
// Function to return the length of the
// largest sub-string divisible by 3
int findLargestString(string& s, int i, int r)
{
    // Base-case
    if (i == s.size()) {
        if (r == 0)
            return 0;
        else
            return INT_MIN;
    }
  
    // If the state has been solved
    // before then return its value
    if (v[i][r])
        return dp[i][r];
  
    // Marking the state as solved
    v[i][r] = 1;
  
    // Recurrence relation
    dp[i][r]
        = max(1 + findLargestString(s, i + 1,
                                    (r * 2 + (s[i] - '0')) % 3),
              findLargestString(s, i + 1, r));
    return dp[i][r];
}
  
// Driver code
int main()
{
    string s = "101";
  
    cout << findLargestString(s, 0, 0);
  
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java implementation of th approach 
class GFG 
{
  
    final static int N = 100 ;
    final static int INT_MIN = Integer.MIN_VALUE;
      
    static int dp[][] = new int[N][3]; 
    static int v[][] = new int[N][3]; 
      
      
    // Function to return the length of the 
    // largest sub-string divisible by 3 
    static int findLargestString(String s, int i, int r) 
    
        // Base-case 
        if (i == s.length())
        
            if (r == 0
                return 0
            else
                return INT_MIN; 
        
      
        // If the state has been solved 
        // before then return its value 
        if (v[i][r] == 1
            return dp[i][r]; 
      
        // Marking the state as solved 
        v[i][r] = 1
      
        // Recurrence relation 
        dp[i][r] = Math.max(1 + findLargestString(s, i + 1
                          (r * 2 + (s.charAt(i) - '0')) % 3), 
                            findLargestString(s, i + 1, r)); 
        return dp[i][r];
    }
      
    // Driver code 
    public static void main (String[] args) 
    
        String s = "101"
      
        System.out.print(findLargestString(s, 0, 0)); 
    
}
  
// This code is contributed by AnkitRai01

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 implementation of the approach 
import numpy as np
import sys
  
N = 100
INT_MIN = -(sys.maxsize - 1)
  
dp = np.zeros((N, 3)); 
v = np.zeros((N, 3)); 
  
# Function to return the length of the 
# largest sub-string divisible by 3 
def findLargestString(s, i, r) : 
  
    # Base-case 
    if (i == len(s)) :
        if (r == 0) :
            return 0
        else :
            return INT_MIN; 
  
    # If the state has been solved 
    # before then return its value 
    if (v[i][r]) :
        return dp[i][r]; 
  
    # Marking the state as solved 
    v[i][r] = 1
  
    # Recurrence relation 
    dp[i][r] = max(1 + findLargestString(s, i + 1
                  (r * 2 + (ord(s[i]) - ord('0'))) % 3),
                       findLargestString(s, i + 1, r)); 
                  
    return dp[i][r]; 
  
# Driver code 
if __name__ == "__main__"
  
    s = "101"
  
    print(findLargestString(s, 0, 0)); 
  
# This code is contributed by AnkitRai01

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# implementation of th approach 
using System;
using System.Collections.Generic;
  
class GFG 
{
  
    readonly static int N = 100 ;
    readonly static int INT_MIN = int.MinValue;
      
    static int [,]dp = new int[N, 3]; 
    static int [,]v = new int[N, 3]; 
      
    // Function to return the length of the 
    // largest sub-string divisible by 3 
    static int findLargestString(String s, int i, int r) 
    
        // Base-case 
        if (i == s.Length)
        
            if (r == 0) 
                return 0; 
            else
                return INT_MIN; 
        
      
        // If the state has been solved 
        // before then return its value 
        if (v[i, r] == 1) 
            return dp[i, r]; 
      
        // Marking the state as solved 
        v[i, r] = 1; 
      
        // Recurrence relation 
        dp[i, r] = Math.Max(1 + findLargestString(s, i + 1, 
                                (r * 2 + (s[i] - '0')) % 3), 
                            findLargestString(s, i + 1, r)); 
        return dp[i, r];
    }
      
    // Driver code 
    public static void Main(String[] args) 
    
        String s = "101"
      
        Console.Write(findLargestString(s, 0, 0)); 
    
}
  
// This code is contributed by 29AjayKumar

chevron_right


Output:

2

Time Complexity: O(n)




My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Improved By : AnkitRai01, 29AjayKumar