Longest sub-sequence of array containing Lucas numbers

Given an array arr[] of N elements, the task is to find the length of the longest sub-sequence in arr[] such that all the elements of the sequence are Lucas Numbers.

Examples:

Input: arr[] = {2, 3, 55, 6, 1, 18}
Output: 4
1, 2, 3 and 18 are the only elements from the Lucas sequence.

Input: arr[] = {22, 33, 2, 123}
Output: 2

Approach:

  • Find the maximum element in the array.
  • Generate Lucas numbers upto to the max and store them in a set.
  • Traverse the array arr[] and check if the current element is present in the set.
  • If it is present in the set, and increment the count.

Below is the implementation of the above approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
  
// Function to return the length of
// the longest required sub-sequence
int LucasSequence(int arr[], int n)
{
    // Find the maximum element from 
    // the array
    int max = *max_element(arr, arr+n);
  
    // Insert all lucas numbers
    // below max to the set
    // a and b are first two elements
    // of the Lucas sequence
    unordered_set<int> s;
    int a = 2, b = 1, c;
    s.insert(a);
    s.insert(b);
    while (b < max) {
        int c = a + b;
        a = b;
        b = c;
        s.insert(b);
    }
  
    int count = 0;
    for (int i = 0; i < n; i++) {
  
        // If current element is a Lucas 
        // number, increment count
        auto it = s.find(arr[i]);
        if (it != s.end()) 
            count++;
    }
  
    // Return the count
    return count;
}
  
// Driver code
int main()
{
    int arr[] = { 7, 11, 22, 4, 2, 1, 8, 9 };
    int n = sizeof(arr) / sizeof(arr[0]);
  
    cout << LucasSequence(arr, n);
  
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java implementation of the approach
import java.util.*;
  
class GFG 
{
  
    // Function to return the length of 
    // the longest required sub-sequence 
    static int LucasSequence(int[] arr, int n)
    {
        // Find the maximum element from 
        // the array 
        int max = Arrays.stream(arr).max().getAsInt();
        int counter = 0;
  
        // Insert all lucas numbers 
        // below max to the set 
        // a and b are first two elements 
        // of the Lucas sequence 
        HashSet<Integer> s = new HashSet<>();
  
        int a = 2, b = 1;
        s.add(a);
        s.add(b);
  
        while (b < max)
        {
            int c = a + b;
            a = b;
            b = c;
            s.add(b);
        }
  
        for (int i = 0; i < n; i++)
        {
  
            // If current element is a Lucas 
            // number, increment count 
            if (s.contains(arr[i])) 
            {
                counter++;
            }
        }
  
        // Return the count 
        return counter;
    }
  
    // Driver code 
    public static void main(String[] args)
    {
        int[] arr = {7, 11, 22, 4, 2, 1, 8, 9};
        int n = arr.length;
  
        System.out.println(LucasSequence(arr, n));
    }
}
  
// This code has been contributed by 29AjayKumar

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python 3 implementation of the approach
  
# Function to return the length of
# the longest required sub-sequence
def LucasSequence(arr, n):
      
    # Find the maximum element from 
    # the array
    max = arr[0]
    for i in range(len(arr)):
        if(arr[i] > max):
            max = arr[i]
  
    # Insert all lucas numbers below max 
    # to the set a and b are first two 
    # elements of the Lucas sequence
    s = set()
    a = 2
    b = 1
    s.add(a)
    s.add(b)
    while (b < max):
        c = a + b
        a = b
        b = c
        s.add(b)
  
    count = 0
    for i in range(n):
          
        # If current element is a Lucas 
        # number, increment count
        if(arr[i] in s):
            count += 1
  
    # Return the count
    return count
  
# Driver code
if __name__ == '__main__':
    arr = [7, 11, 22, 4, 2, 1, 8, 9]
    n = len(arr)
  
    print(LucasSequence(arr, n))
  
# This code is contributed by
# Surendra_Gangwar

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# implementation of the approach 
using System;
using System.Collections.Generic;
using System.Linq;
  
class GFG
{
      
    // Function to return the length of 
    // the longest required sub-sequence 
    static int LucasSequence(int []arr, int n) 
    
        // Find the maximum element from 
        // the array 
        int max = arr.Max(); 
        int counter = 0; 
  
        // Insert all lucas numbers 
        // below max to the set 
        // a and b are first two elements 
        // of the Lucas sequence 
        HashSet<int> s = new HashSet<int>() ;
          
        int a = 2, b = 1 ;
        s.Add(a); 
        s.Add(b); 
          
        while (b < max) 
        
            int c = a + b; 
            a = b; 
            b = c; 
            s.Add(b); 
        
      
        for (int i = 0; i < n; i++) 
        
      
            // If current element is a Lucas 
            // number, increment count 
            if (s.Contains(arr[i]))
                counter++; 
        
      
        // Return the count 
        return counter; 
    
  
    // Driver code 
    static public void Main() 
    
        int []arr = { 7, 11, 22, 4, 2, 1, 8, 9 }; 
        int n = arr.Length ;
      
        Console.WriteLine(LucasSequence(arr, n)) ;
    
}
  
// This code is contributed by Ryuga

chevron_right


Output:

5


My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.





Article Tags :
Practice Tags :


Be the First to upvote.


Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.