Given an array arr[] of size N which is a permutation from 1 to N, the task is to find the lexicographically smallest permutation that can be formed by reversing at most one subarray.
Examples:
Input : arr[] = {1, 3, 4, 2, 5}
Output : 1 2 4 3 5
Explanation: The subarray from index 1 to index 3 can be reversed to get the lexicographically smallest permutation.
Input : arr[] = {4, 3, 1, 2}
Output: 1 3 4 2
Approach: The idea to solve the problem is based on the traversal of the array.
- In the given problem the lexicographically smallest permutation can be obtained by placing the least number at its correct place by one reversal by traversing from left and checking (i+1) is equal to arr[i]
- If it is not equal find the index of that i+1 in the array and reverse the subarray from ith index to the position (i+1).
Below is the implementation of the above approach.
C++
#include <bits/stdc++.h>
using namespace std;
void lexsmallest(vector< int >& arr, int n)
{
int first = -1, flag = 0, find = -1, last = -1;
for ( int i = 0; i < n; i++) {
if (arr[i] != i + 1) {
flag = 1;
first = i;
find = i + 1;
break ;
}
}
if (flag == 0) {
for ( int i = 0; i < n; i++) {
cout << arr[i] << " " ;
}
}
else {
for ( int i = 0; i < n; i++) {
if (arr[i] == find) {
last = i;
break ;
}
}
reverse(arr.begin() + first,
arr.begin() + last + 1);
for ( int i = 0; i < n; i++) {
cout << arr[i] << " " ;
}
}
}
int main()
{
vector< int > arr = { 1, 3, 4, 2, 5 };
int N = arr.size();
lexsmallest(arr, N);
return 0;
}
|
Java
import java.util.*;
class GFG{
static void lexsmallest( int []arr, int n)
{
int first = - 1 , flag = 0 , find = - 1 , last = - 1 ;
for ( int i = 0 ; i < n; i++) {
if (arr[i] != i + 1 ) {
flag = 1 ;
first = i;
find = i + 1 ;
break ;
}
}
if (flag == 0 ) {
for ( int i = 0 ; i < n; i++) {
System.out.print(arr[i]+ " " );
}
}
else {
for ( int i = 0 ; i < n; i++) {
if (arr[i] == find) {
last = i;
break ;
}
}
arr = reverse(arr,first,last);
for ( int i = 0 ; i < n; i++) {
System.out.print(arr[i]+ " " );
}
}
}
static int [] reverse( int str[], int start, int end) {
int temp;
while (start <= end) {
temp = str[start];
str[start] = str[end];
str[end] = temp;
start++;
end--;
}
return str;
}
public static void main(String[] args)
{
int []arr = { 1 , 3 , 4 , 2 , 5 };
int N = arr.length;
lexsmallest(arr, N);
}
}
|
Python3
def lexsmallest(arr, n):
first = - 1
flag = 0
find = - 1
last = - 1
for i in range ( 0 , n):
if (arr[i] ! = i + 1 ):
flag = 1
first = i
find = i + 1
break
if (flag = = 0 ):
for i in range ( 0 , n):
print (arr[i], end = " " )
else :
for i in range ( 0 , n):
if (arr[i] = = find):
last = i
break
arr[first: last + 1 ] = arr[first: last + 1 ][:: - 1 ]
print ( * arr)
arr = [ 1 , 3 , 4 , 2 , 5 ]
N = len (arr)
lexsmallest(arr, N)
|
C#
using System;
class GFG{
static void lexsmallest( int []arr, int n)
{
int first = -1, flag = 0, find = -1, last = -1;
for ( int i = 0; i < n; i++) {
if (arr[i] != i + 1) {
flag = 1;
first = i;
find = i + 1;
break ;
}
}
if (flag == 0) {
for ( int i = 0; i < n; i++) {
Console.Write(arr[i]+ " " );
}
}
else {
for ( int i = 0; i < n; i++) {
if (arr[i] == find) {
last = i;
break ;
}
}
arr = reverse(arr,first,last);
for ( int i = 0; i < n; i++) {
Console.Write(arr[i]+ " " );
}
}
}
static int [] reverse( int [] str, int start, int end) {
int temp;
while (start <= end)
{
temp = str[start];
str[start] = str[end];
str[end] = temp;
start++;
end--;
}
return str;
}
static public void Main (){
int [] arr = { 1, 3, 4, 2, 5 };
int N = arr.Length;
lexsmallest(arr, N);
}
}
|
Javascript
<script>
const lexsmallest = (arr, n) => {
let first = -1, flag = 0, find = -1, last = -1;
for (let i = 0; i < n; i++) {
if (arr[i] != i + 1) {
flag = 1;
first = i;
find = i + 1;
break ;
}
}
if (flag == 0) {
for (let i = 0; i < n; i++) {
document.write(`${arr[i]} `);
}
}
else {
for (let i = 0; i < n; i++) {
if (arr[i] == find) {
last = i;
break ;
}
}
arr.splice(first, last, ...arr.slice(first, last + 1).reverse());
for (let i = 0; i < n; i++) {
document.write(`${arr[i]} `);
}
}
}
let arr = [1, 3, 4, 2, 5];
let N = arr.length;
lexsmallest(arr, N);
</script>
|
Time Complexity: O(N)
Auxiliary Space: O(1)
Related Topic: Subarrays, Subsequences, and Subsets in Array
Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!