Related Articles
Length of the longest subsegment which is UpDown after inserting atmost one integer
• Last Updated : 25 Jun, 2020

A sequence of integers is said to be UpDown, if the inequality holds true.
You are given a sequence . You can insert at most one integer in the sequence. It could be any integer. Find the length of the longest subsegment of the new sequence after adding an integer (or choosing not to) which is UpDown.
A subsegment is a consecutive portion of a sequence. That is, a subsegment of will be of the form for some and .

Examples:

Input: arr[] = {1, 10, 3, 20, 25, 24}
Output: 7
Suppose we insert 5 between 20 and 25, the whole sequence (1, 10, 3, 20, 5, 25, 24)
becomes an UpDown Sequence and hence the answer is 7.

Input: arr[] = {100, 1, 10, 3, 4, 6, 11}
Output: 6
Suppose we insert 4 between 4 and 6, the sequence (1, 10, 3, 4, 4, 6) becomes an UpDown
Sequence and hence the answer is 6. We can verify that this is the best possible
solution.

## Recommended: Please try your approach on {IDE} first, before moving on to the solution.

Approach: Let us begin by defining two types of sequence:-

1. UpDown Sequence (UD) : A sequence of the form That is, the squence starts by increasing first.
2. DownUp Sequence (DU) : A sequence of the form That is, the squence starts by decreasing first.

Let us first find out the length of UD and DU sequences without thinking about other parts of the problem. For that, let us define to be the longest UpDown sequence beginning at and to be the longest DownUp sequence beginning at .
Recurrence relation for is :-

(1) Here, N is the length of the sequence and state is either 1 or 2 and stands for UD and DU sequence respectively. While forming the recurrence relation, we used the fact that In an UD sequence , the part is a DU sequence and vice-versa. We can use Dynamic Programming to calculate the value of and then store our result in array dp[N].
Now, notice that it is always possible to insert an integer at the end of an UpDown sequence to increase the length of the sequence by 1 and yet retain the UpDown inequality. Why ? Suppose an UD sequence breaks at because when we expected it to be . We can insert an integer between and . Now, is satisfied.
We can give similar argument for the case when UD sequence breaks at because when we expected it to be . But we don’t have to actually insert anything. We have to just find the length of the longest UD sequence possible.

Observe that a UD sequence is a combination of :-

1. UD sequence I + x + UD sequence II if the length of UD sequence I is odd
2. UD sequence I + x + DU sequence I if the length of UD sequence I is even

where, x is the inserted element.

So for each i, we calculate the length of the longest UD sequence starting at i. Let that length be y.
If y is odd, we insert an element there (theoretically) and calculate the length of longest UD sequence starting at i+y. The longest UD sequence beginning at i after inserting an element is therefore dp[i] + 1 + dp[i+y].

If y is even, we insert an element there (theoretically) and calculate the length of longest DU sequence starting at i+y. The longest UD sequence beginning at i after inserting an element is therefore dp[i] + 1 + dp[i+y].
The final answer is maximum such value among all i.

## C++

 // C++ implementation of the approach#include using namespace std;  // Function to recursively fill the dp arrayint f(int i, int state, int A[], int dp[], int N){    if (i >= N)        return 0;      // If f(i, state) is already calculated    // then return the value    else if (dp[i][state] != -1) {        return dp[i][state];    }      // Calculate f(i, state) according to the    // recurrence relation and store in dp[][]    else {        if (i == N - 1)            dp[i][state] = 1;        else if (state == 1 && A[i] > A[i + 1])            dp[i][state] = 1;        else if (state == 2 && A[i] < A[i + 1])            dp[i][state] = 1;        else if (state == 1 && A[i] <= A[i + 1])            dp[i][state] = 1 + f(i + 1, 2, A, dp, N);        else if (state == 2 && A[i] >= A[i + 1])            dp[i][state] = 1 + f(i + 1, 1, A, dp, N);        return dp[i][state];    }}  // Function that calls the resucrsive function to// fill the dp array and then returns the resultint maxLenSeq(int A[], int N){    int i, tmp, y, ans;      // dp[][] array for storing result    // of f(i, 1) and f(1, 2)    int dp;      // Populating the array dp[] with -1    memset(dp, -1, sizeof dp);      // Make sure that longest UD and DU    // sequence starting at each    // index is calculated    for (i = 0; i < N; i++) {        tmp = f(i, 1, A, dp, N);        tmp = f(i, 2, A, dp, N);    }      // Assume the answer to be -1    // This value will only increase    ans = -1;    for (i = 0; i < N; i++) {          // y is the length of the longest        // UD sequence starting at i        y = dp[i];          if (i + y >= N)            ans = max(ans, dp[i] + 1);          // If length is even then add an integer        // and then a DU sequence starting at i + y        else if (y % 2 == 0) {            ans = max(ans, dp[i] + 1 + dp[i + y]);        }          // If length is odd then add an integer        // and then a UD sequence starting at i + y        else if (y % 2 == 1) {            ans = max(ans, dp[i] + 1 + dp[i + y]);        }    }    return ans;}  // Driver codeint main(){    int A[] = { 1, 10, 3, 20, 25, 24 };    int n = sizeof(A) / sizeof(int);      cout << maxLenSeq(A, n);      return 0;}

## Java

 // Java implementation of the approach class GFG{          // Function to recursively fill the dp array     static int f(int i, int state, int A[],                  int dp[][], int N)     {         if (i >= N)             return 0;               // If f(i, state) is already calculated         // then return the value         else if (dp[i][state] != -1)        {             return dp[i][state];         }               // Calculate f(i, state) according to the         // recurrence relation and store in dp[][]         else        {             if (i == N - 1)                 dp[i][state] = 1;             else if (state == 1 && A[i] > A[i + 1])                 dp[i][state] = 1;             else if (state == 2 && A[i] < A[i + 1])                 dp[i][state] = 1;             else if (state == 1 && A[i] <= A[i + 1])                 dp[i][state] = 1 + f(i + 1, 2, A, dp, N);             else if (state == 2 && A[i] >= A[i + 1])                 dp[i][state] = 1 + f(i + 1, 1, A, dp, N);             return dp[i][state];         }     }           // Function that calls the resucrsive function to     // fill the dp array and then returns the result     static int maxLenSeq(int A[], int N)     {         int i,j, tmp, y, ans;               // dp[][] array for storing result         // of f(i, 1) and f(1, 2)         int dp[][] = new int;                   // Populating the array dp[] with -1        for(i= 0; i < 1000; i++)            for(j = 0; j < 3; j++)                dp[i][j] = -1;          // Make sure that longest UD and DU         // sequence starting at each         // index is calculated         for (i = 0; i < N; i++)         {             tmp = f(i, 1, A, dp, N);             tmp = f(i, 2, A, dp, N);         }               // Assume the answer to be -1        // This value will only increase         ans = -1;         for (i = 0; i < N; i++)         {                   // y is the length of the longest             // UD sequence starting at i             y = dp[i];                   if (i + y >= N)                 ans = Math.max(ans, dp[i] + 1);                   // If length is even then add an integer             // and then a DU sequence starting at i + y             else if (y % 2 == 0)             {                 ans = Math.max(ans, dp[i] + 1 + dp[i + y]);             }                   // If length is odd then add an integer             // and then a UD sequence starting at i + y             else if (y % 2 == 1)             {                 ans = Math.max(ans, dp[i] + 1 + dp[i + y]);             }         }         return ans;     }           // Driver code     public static void main (String[] args)     {         int A[] = { 1, 10, 3, 20, 25, 24 };         int n = A.length;               System.out.println(maxLenSeq(A, n));     }}  // This code is contributed by AnkitRai01

## Python3

 # Python3 implementation of the approach  # Function to recursively fill the dp arraydef f(i, state, A, dp, N):    if i >= N:        return 0      # If f(i, state) is already calculated    # then return the value    elif dp[i][state] != -1:        return dp[i][state]      # Calculate f(i, state) according to the    # recurrence relation and store in dp[][]    else:        if i == N - 1:            dp[i][state] = 1        elif state == 1 and A[i] > A[i + 1]:            dp[i][state] = 1        elif state == 2 and A[i] < A[i + 1]:            dp[i][state] = 1        elif state == 1 and A[i] <= A[i + 1]:            dp[i][state] = 1 + f(i + 1, 2, A, dp, N)        elif state == 2 and A[i] >= A[i + 1]:            dp[i][state] = 1 + f(i + 1, 1, A, dp, N)          return dp[i][state]  # Function that calls the resucrsive function to# fill the dp array and then returns the resultdef maxLenSeq(A, N):      # dp[][] array for storing result    # of f(i, 1) and f(1, 2)    # Populating the array dp[] with -1    dp = [[-1, -1, -1] for i in range(1000)]      # Make sure that longest UD and DU    # sequence starting at each    # index is calculated    for i in range(N):        tmp = f(i, 1, A, dp, N)        tmp = f(i, 2, A, dp, N)      # Assume the answer to be -1    # This value will only increase    ans = -1    for i in range(N):          # y is the length of the longest        # UD sequence starting at i        y = dp[i]        if (i + y) >= N:            ans = max(ans, dp[i] + 1)          # If length is even then add an integer        # and then a DU sequence starting at i + y        elif y % 2 == 0:            ans = max(ans, dp[i] + 1 + dp[i + y])          # If length is odd then add an integer        # and then a UD sequence starting at i + y        elif y % 2 == 1:            ans = max(ans, dp[i] + 1 + dp[i + y])      return ans  # Driver Codeif __name__ == "__main__":    A = [1, 10, 3, 20, 25, 24]    n = len(A)    print(maxLenSeq(A, n))  # This code is contributed by# sanjeev2552

## C#

 // C# implementation of the approachusing System;      class GFG{          // Function to recursively fill the dp array     static int f(int i, int state, int []A,                  int [,]dp, int N)     {         if (i >= N)             return 0;               // If f(i, state) is already calculated         // then return the value         else if (dp[i, state] != -1)        {             return dp[i, state];         }               // Calculate f(i, state) according to the         // recurrence relation and store in dp[,]         else        {             if (i == N - 1)                 dp[i, state] = 1;             else if (state == 1 && A[i] > A[i + 1])                 dp[i, state] = 1;             else if (state == 2 && A[i] < A[i + 1])                 dp[i, state] = 1;             else if (state == 1 && A[i] <= A[i + 1])                 dp[i, state] = 1 + f(i + 1, 2, A, dp, N);             else if (state == 2 && A[i] >= A[i + 1])                 dp[i, state] = 1 + f(i + 1, 1, A, dp, N);             return dp[i, state];         }     }           // Function that calls the resucrsive function to     // fill the dp array and then returns the result     static int maxLenSeq(int []A, int N)     {         int i, j, tmp, y, ans;               // dp[,] array for storing result         // of f(i, 1) and f(1, 2)         int [,]dp = new int[1000, 3];                   // Populating the array dp[] with -1        for(i = 0; i < 1000; i++)            for(j = 0; j < 3; j++)                dp[i, j] = -1;          // Make sure that longest UD and DU         // sequence starting at each         // index is calculated         for (i = 0; i < N; i++)         {             tmp = f(i, 1, A, dp, N);             tmp = f(i, 2, A, dp, N);         }               // Assume the answer to be -1        // This value will only increase         ans = -1;         for (i = 0; i < N; i++)         {                   // y is the length of the longest             // UD sequence starting at i             y = dp[i, 1];                   if (i + y >= N)                 ans = Math.Max(ans, dp[i, 1] + 1);                   // If length is even then add an integer             // and then a DU sequence starting at i + y             else if (y % 2 == 0)             {                 ans = Math.Max(ans, dp[i, 1] + 1 +                                     dp[i + y, 2]);             }                   // If length is odd then add an integer             // and then a UD sequence starting at i + y             else if (y % 2 == 1)             {                 ans = Math.Max(ans, dp[i, 1] + 1 +                                     dp[i + y, 1]);             }         }         return ans;     }           // Driver code     public static void Main (String[] args)     {         int []A = { 1, 10, 3, 20, 25, 24 };         int n = A.Length;               Console.WriteLine(maxLenSeq(A, n));     }}  // This code is contributed by 29AjayKumar
Output:
7


Time Complexity: O(n)
Space Complexity: O(n)

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  Get hold of all the important mathematical concepts for competitive programming with the Essential Maths for CP Course at a student-friendly price.

In case you wish to attend live classes with industry experts, please refer Geeks Classes Live and Geeks Classes Live USA

My Personal Notes arrow_drop_up