Longest subsegment of ‘1’s formed by changing at most k ‘0’s

Given a binary array a[] and a number k, we need to find length of he longest subsegment of ‘1’s possible by changing at most k ‘0’s.

Examples:

Input : a[] = {1, 0, 0, 1, 1, 0, 1}, 
          k = 1.
Output : 4
Explanation : Here, we should only change 1
zero(0). Maximum possible length we can get
is by changing the 3rd zero in the array, 
we get a[] = {1, 0, 0, 1, 1, 1, 1}

Input : a[] = {1, 0, 0, 1, 0, 1, 0, 1, 0, 1}, 
         k = 2.
Output : 5
Output: Here, we can change only 2 zeros. 
Maximum possible length we can get is by 
changing the 3rd and 4th (or) 4th and 5th 
zeros.



We can solve this problem using two pointers technique. Let us take a subarray [l, r] which contains at most k zeroes. Let our left pointer be l and right pointer be r. We always maintain our subsegment [l, r] to contain no more than k zeroes by moving the left pointer l. Check at every step for maximum size (i.e, r-l+1).

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// CPP program to find length of longest
// subsegment of all 1's by changing at
// most k 0's
#include <iostream>
using namespace std;
  
int longestSubSeg(int a[], int n, int k)
{
    int cnt0 = 0;
    int l = 0;
    int max_len = 0;
  
    // i decides current ending point
    for (int i = 0; i < n; i++) {
        if (a[i] == 0)
            cnt0++;
  
        // If there are more 0's move
        // left point for current ending
        // point.
        while (cnt0 > k) {
            if (a[l] == 0)
                cnt0--;
            l++;
        }
  
        max_len = max(max_len, i - l + 1);
    }
  
    return max_len;
}
  
// Driver code
int main()
{
    int a[] = { 1, 0, 0, 1, 0, 1, 0, 1 };
    int k = 2;
    int n = sizeof(a) / sizeof(a[0]);
    cout << longestSubSeg(a, n, k);
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program to find length of
// longest subsegment of all 1's 
// by changing at most k 0's
import java.io.*;
  
class GFG {
  
static int longestSubSeg(int a[], int n, 
                                  int k)
{
    int cnt0 = 0;
    int l = 0;
    int max_len = 0;
  
    // i decides current ending point
    for (int i = 0; i < n; i++) {
        if (a[i] == 0)
            cnt0++;
  
        // If there are more 0's move
        // left point for current ending
        // point.
        while (cnt0 > k) {
            if (a[l] == 0)
                cnt0--;
            l++;
        }
  
        max_len = Math.max(max_len, i - l + 1);
    }
  
    return max_len;
}
  
// Driver code
public static void main (String[] args)
{
    int a[] = { 1, 0, 0, 1, 0, 1, 0, 1 };
    int k = 2;
    int n = a.length;
    System.out.println( longestSubSeg(a, n, k));
          
}
}
  
// This code is contributed by vt_m

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 program to find length 
# of longest subsegment of all 1's  
# by changing at most k 0's
  
def longestSubSeg(a, n, k):
  
    cnt0 = 0
    l = 0
    max_len = 0;
  
    # i decides current ending point
    for i in range(0, n):
        if a[i] == 0:
            cnt0 += 1
  
        # If there are more 0's move
        # left point for current
        # ending point.
        while (cnt0 > k):
            if a[l] == 0:
                cnt0 -= 1
            l += 1
          
  
        max_len = max(max_len, i - l + 1);
      
  
    return max_len
  
# Driver code
a = [1, 0, 0, 1, 0, 1, 0, 1 ]
k = 2
n = len(a)
print(longestSubSeg(a, n, k))
  
# This code is contributed by Smitha Dinesh Semwal

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program to find length of
// longest subsegment of all 1's
// by changing at most k 0's
using System;
  
class GFG {
  
    static int longestSubSeg(int[] a, int n,
                                      int k)
    {
        int cnt0 = 0;
        int l = 0;
        int max_len = 0;
  
        // i decides current ending point
        for (int i = 0; i < n; i++)
        {
            if (a[i] == 0)
                cnt0++;
  
            // If there are more 0's move
            // left point for current ending
            // point.
            while (cnt0 > k) {
                if (a[l] == 0)
                    cnt0--;
                l++;
            }
  
            max_len = Math.Max(max_len, i - l + 1);
        }
  
        return max_len;
    }
  
    // Driver code
    public static void Main()
    {
        int[] a = { 1, 0, 0, 1, 0, 1, 0, 1 };
        int k = 2;
        int n = a.Length;
        Console.WriteLine(longestSubSeg(a, n, k));
    }
}
  
// This code is contributed by vt_m

chevron_right


PHP

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
// PHP program to find length of longest
// subsegment of all 1's by changing at
// most k 0's
  
function longestSubSeg( $a, $n, $k)
{
    $cnt0 = 0;
    $l = 0;
    $max_len = 0;
  
    // i decides current ending point
    for($i = 0; $i < $n; $i++) 
    {
        if ($a[$i] == 0)
            $cnt0++;
  
        // If there are more 0's move
        // left point for current ending
        // point.
        while ($cnt0 > $k
        {
            if ($a[$l] == 0)
                $cnt0--;
            $l++;
        }
  
        $max_len = max($max_len, $i - $l + 1);
    }
  
    return $max_len;
}
  
    // Driver code
    $a = array(1, 0, 0, 1, 0, 1, 0, 1);
    $k = 2;
    $n = count($a);
    echo longestSubSeg($a, $n, $k);
  
// This code is contributed by anuj_67.
?>

chevron_right



Output:

5


My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Improved By : vt_m



Article Tags :
Practice Tags :


Be the First to upvote.


Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.