Given an Array of Integers and an Integer value k, find out k non-overlapping sub-arrays which have k maximum sums.
Examples:
Input : arr1[] = {4, 1, 1, -1, -3, -5, 6, 2, -6, -2},
k = 3.
Output : {4,1},{1} and {6,2} can be taken, thus the output should be 14.
Input : arr2 = {5, 1, 2, -6, 2, -1, 3, 1},
k = 2.
Output : Maximum non-overlapping sub-array sum1: 8,
starting index: 0, ending index: 2.
Maximum non-overlapping sub-array sum2: 5,
starting index: 4, ending index: 7.
Prerequisite: Kadane’s Algorithm
Kadane’s algorithm finds out only the maximum subarray sum, but using the same algorithm we can find out k maximum non-overlapping subarray sums. The approach is:
- Find out the maximum subarray in the array using Kadane’s algorithm. Also find out its starting and end indices. Print the sum of this subarray.
- Fill each cell of this subarray by -infinity.
- Repeat process 1 and 2 for k times.
C++
#include <bits/stdc++.h>
using namespace std;
void kmax( int arr[], int k, int n) {
for ( int c = 0; c < k; c++){
int max_so_far = numeric_limits< int >::min();
int max_here = 0;
int start = 0, end = 0, s = 0;
for ( int i = 0; i < n; i++)
{
max_here += arr[i];
if (max_so_far < max_here)
{
max_so_far = max_here;
start = s;
end = i;
}
if (max_here < 0)
{
max_here = 0;
s = i + 1;
}
}
cout << "Maximum non-overlapping sub-array sum"
<< (c + 1) << ": " << max_so_far
<< ", starting index: " << start
<< ", ending index: " << end << "." << endl;
for ( int l = start; l <= end; l++)
arr[l] = numeric_limits< int >::min();
}
cout << endl;
}
int main()
{
int arr1[] = {4, 1, 1, -1, -3,
-5, 6, 2, -6, -2};
int k1 = 3;
int n1 = sizeof (arr1) / sizeof (arr1[0]);
kmax(arr1, k1, n1);
int arr2[] = {5, 1, 2, -6, 2, -1, 3, 1};
int k2 = 2;
int n2 = sizeof (arr2)/ sizeof (arr2[0]);
kmax(arr2, k2, n2);
return 0;
}
|
Java
class GFG {
static void kmax( int arr[], int k, int n) {
for ( int c = 0 ; c < k; c++)
{
int max_so_far = Integer.MIN_VALUE;
int max_here = 0 ;
int start = 0 , end = 0 , s = 0 ;
for ( int i = 0 ; i < n; i++)
{
max_here += arr[i];
if (max_so_far < max_here)
{
max_so_far = max_here;
start = s;
end = i;
}
if (max_here < 0 )
{
max_here = 0 ;
s = i + 1 ;
}
}
System.out.println( "Maximum non-overlapping sub-arraysum" +
(c + 1 ) + ": " + max_so_far +
", starting index: " + start +
", ending index: " + end + "." );
for ( int l = start; l <= end; l++)
arr[l] = Integer.MIN_VALUE;
}
System.out.println();
}
public static void main(String[] args)
{
int arr1[] = { 4 , 1 , 1 , - 1 , - 3 , - 5 ,
6 , 2 , - 6 , - 2 };
int k1 = 3 ;
int n1 = arr1.length;
kmax(arr1, k1, n1);
int arr2[] = { 5 , 1 , 2 , - 6 , 2 , - 1 , 3 , 1 };
int k2 = 2 ;
int n2 = arr2.length;
kmax(arr2, k2, n2);
}
}
|
Python3
def kmax(arr, k, n):
for c in range (k):
max_so_far = - float ( "inf" )
max_here = 0
start = 0
end = 0
s = 0
for i in range (n):
max_here + = arr[i]
if (max_so_far < max_here):
max_so_far = max_here
start = s
end = i
if (max_here < 0 ):
max_here = 0
s = i + 1
print ( "Maximum non-overlapping sub-array sum" ,
c + 1 , ": " , max_so_far, ", starting index: " ,
start, ", ending index: " , end, "." , sep = "")
for l in range (start, end + 1 ):
arr[l] = - float ( "inf" )
print ()
arr1 = [ 4 , 1 , 1 , - 1 , - 3 , - 5 , 6 , 2 , - 6 , - 2 ]
k1 = 3
n1 = len (arr1)
kmax(arr1, k1, n1)
arr2 = [ 5 , 1 , 2 , - 6 , 2 , - 1 , 3 , 1 ]
k2 = 2
n2 = len (arr2)
kmax(arr2, k2, n2)
|
C#
using System;
class GFG {
static void kmax( int []arr, int k, int n) {
for ( int c = 0; c < k; c++)
{
int max_so_far = int .MinValue;
int max_here = 0;
int start = 0, end = 0, s = 0;
for ( int i = 0; i < n; i++)
{
max_here += arr[i];
if (max_so_far < max_here)
{
max_so_far = max_here;
start = s;
end = i;
}
if (max_here < 0)
{
max_here = 0;
s = i + 1;
}
}
Console.WriteLine( "Maximum non-overlapping sub-arraysum" +
(c + 1) + ": " + max_so_far +
", starting index: " + start +
", ending index: " + end + "." );
for ( int l = start; l <= end; l++)
arr[l] = int .MinValue;
}
Console.WriteLine();
}
public static void Main(String[] args)
{
int []arr1 = {4, 1, 1, -1, -3, -5,
6, 2, -6, -2};
int k1 = 3;
int n1 = arr1.Length;
kmax(arr1, k1, n1);
int []arr2 = {5, 1, 2, -6, 2, -1, 3, 1};
int k2 = 2;
int n2 = arr2.Length;
kmax(arr2, k2, n2);
}
}
|
PHP
<?php
function kmax( $arr , $k , $n ) {
for ( $c = 0; $c < $k ; $c ++)
{
$max_so_far = PHP_INT_MIN;
$max_here = 0;
$start = 0; $end = 0; $s = 0;
for ( $i = 0; $i < $n ; $i ++)
{
$max_here += $arr [ $i ];
if ( $max_so_far < $max_here )
{
$max_so_far = $max_here ;
$start = $s ;
$end = $i ;
}
if ( $max_here < 0)
{
$max_here = 0;
$s = $i + 1;
}
}
echo "Maximum non-overlapping sub-arraysum" ;
echo ( $c + 1) , ": " , $max_so_far ;
echo ", starting index: " , $start ;
echo ", ending index: " , $end , "." ;
echo "\n" ;
for ( $l = $start ; $l <= $end ; $l ++)
$arr [ $l ] = PHP_INT_MIN;
}
echo "\n" ;
}
$arr1 = array (4, 1, 1, -1, -3, -5,
6, 2, -6, -2);
$k1 = 3;
$n1 = count ( $arr1 );
kmax( $arr1 , $k1 , $n1 );
$arr2 = array (5, 1, 2, -6, 2, -1, 3, 1);
$k2 = 2;
$n2 = count ( $arr2 );
kmax( $arr2 , $k2 , $n2 );
?>
|
Javascript
<script>
function kmax(arr, k, n)
{
for (let c = 0; c < k; c++)
{
let max_so_far = -2147483648;
let max_here = 0;
let start = 0, end = 0, s = 0;
for (let i = 0; i < n; i++)
{
max_here += arr[i];
if (max_so_far < max_here)
{
max_so_far = max_here;
start = s;
end = i;
}
if (max_here < 0)
{
max_here = 0;
s = i + 1;
}
}
document.write( "Maximum non-overlapping " +
"sub-array sum" + (c + 1) +
": " + max_so_far +
", starting index: " + start +
", ending index: " + end +
"." + "<br>" );
for (let l = start; l <= end; l++)
arr[l] = -2147483648;
}
document.write( "<br>" );
}
let arr1 = [ 4, 1, 1, -1, -3,
-5, 6, 2, -6, -2 ];
let k1 = 3;
let n1 = arr1.length;
kmax(arr1, k1, n1);
let arr2 = [ 5, 1, 2, -6,
2, -1, 3, 1 ];
let k2 = 2;
let n2 = arr2.length;
kmax(arr2, k2, n2);
</script>
|
Output:
Maximum non-overlapping sub-array sum1: 8, starting index: 6, ending index: 7.
Maximum non-overlapping sub-array sum2: 6, starting index: 0, ending index: 2.
Maximum non-overlapping sub-array sum3: -1, starting index: 3, ending index: 3.
Maximum non-overlapping sub-array sum1: 8, starting index: 0, ending index: 2.
Maximum non-overlapping sub-array sum2: 5, starting index: 4, ending index: 7.
Time Complexity: The outer loop runs for k times and kadane’s algorithm in each iteration runs in linear time O(n). Hence the overall time complexity is O(k*n).
Auxiliary Space : O(1)