Skip to content
Related Articles

Related Articles

Javascript Program to Maximize sum of diagonal of a matrix by rotating all rows or all columns

View Discussion
Improve Article
Save Article
Like Article
  • Last Updated : 02 Feb, 2022

Given a square matrix, mat[][] of dimensions N * N, the task is find the maximum sum of diagonal elements possible from the given matrix by rotating either all the rows or all the columns of the matrix by a positive integer.

Examples:

Input: mat[][] = { { 1, 1, 2 }, { 2, 1, 2 }, { 1, 2, 2 } }
Output:
Explanation: 
Rotating all the columns of matrix by 1 modifies mat[][] to { {2, 1, 2}, {1, 2, 2}, {1, 1, 2} }. 
Therefore, the sum of diagonal elements of the matrix = 2 + 2 + 2 = 6 which is the maximum possible.

Input: A[][] = { { -1, 2 }, { -1, 3 } }
Output: 2

Approach: The idea is to rotate all the rows and columns of the matrix in all possible ways and calculate the maximum sum obtained. Follow the steps to solve the problem:

  • Initialize a variable, say maxDiagonalSum to store the maximum possible sum of diagonal elements the matrix by rotating all the rows or columns of the matrix.
  • Rotate all the rows of the matrix by a positive integer in the range [0, N – 1] and update the value of maxDiagonalSum.
  • Rotate all the columns of the matrix by a positive integer in the range [0, N – 1] and update the value of maxDiagonalSum.
  • Finally, print the value of maxDiagonalSum.

Below is the implementation of the above approach:

Javascript




<script>
 
// Javascript program to implement
// the above approach
let N = 3;
   
// Function to find maximum sum of
// diagonal elements of matrix by
// rotating either rows or columns
function findMaximumDiagonalSumOMatrixf(A)
{
      
    // Stores maximum diagonal sum of elements
    // of matrix by rotating rows or columns
    let maxDiagonalSum = Number.MIN_VALUE;
      
    // Rotate all the columns by an integer
    // in the range [0, N - 1]
    for(let i = 0; i < N; i++)
    {
          
        // Stores sum of diagonal elements
        // of the matrix
        let curr = 0;
          
        // Calculate sum of diagonal
        // elements of the matrix
        for(let j = 0; j < N; j++)
        {
              
            // Update curr
            curr += A[j][(i + j) % N];
        }
           
        // Update maxDiagonalSum
        maxDiagonalSum = Math.max(maxDiagonalSum,
                                  curr);
    }
      
    // Rotate all the rows by an integer
    // in the range [0, N - 1]
    for(let i = 0; i < N; i++)
    {
          
        // Stores sum of diagonal elements
        // of the matrix
        let curr = 0;
          
        // Calculate sum of diagonal
        // elements of the matrix
        for(let j = 0; j < N; j++)
        {
              
            // Update curr
            curr += A[(i + j) % N][j];
        }
          
        // Update maxDiagonalSum
        maxDiagonalSum = Math.max(maxDiagonalSum,
                                  curr);
    }
    return maxDiagonalSum;
}
   
    // Driver Code
    let mat = [[ 1, 1, 2 ],
                    [ 2, 1, 2 ],
                    [ 1, 2, 2 ]];
       
    document.write(
        findMaximumDiagonalSumOMatrixf(mat));
 
// This code is contributed by souravghosh0416.
</script>

Output: 

6

 

Time Complexity: O(N2) 
Auxiliary Space: O(1)

Please refer complete article on Maximize sum of diagonal of a matrix by rotating all rows or all columns for more details!
 


My Personal Notes arrow_drop_up
Recommended Articles
Page :

Start Your Coding Journey Now!