Given a binary tree, write a function that returns true if the tree satisfies below property:
For every node, data value must be equal to the sum of data values in left and right children. Consider data value as 0 for NULL children.
Examples:
Input :
10
/ \
8 2
/ \ \
3 5 2
Output : Yes
Input :
5
/ \
-2 7
/ \ \
1 6 7
Output : No
We have already discussed the recursive approach. In this post an iterative approach is discussed.
Approach: The idea is to use a queue to do level order traversal of the Binary Tree and simultaneously check for every node:
- If the current node has two children and if the current node is equal to the sum of its left and right children.
- If the current node has just left child and if the current node is equal to its left child.
- If the current node has just right child and if the current node is equal to its right child.
Below is the implementation of the above approach:
C++
#include <bits/stdc++.h>
using namespace std;
struct Node {
int data;
Node *left, *right;
};
Node* newNode( int data)
{
Node* node = new (Node);
node->data = data;
node->left = node->right = NULL;
return (node);
}
bool CheckChildrenSum(Node* root)
{
queue<Node*> q;
q.push(root);
while (!q.empty()) {
Node* temp = q.front();
q.pop();
if (temp->left && temp->right) {
if (temp->data != temp->left->data + temp->right->data)
return false ;
q.push(temp->left);
q.push(temp->right);
}
else if (!temp->left && temp->right) {
if (temp->data != temp->right->data)
return false ;
q.push(temp->right);
}
else if (!temp->right && temp->left) {
if (temp->data != temp->left->data)
return false ;
q.push(temp->left);
}
}
return true ;
}
int main()
{
Node* root = newNode(10);
root->left = newNode(8);
root->right = newNode(2);
root->left->left = newNode(3);
root->left->right = newNode(5);
root->right->right = newNode(2);
if (CheckChildrenSum(root))
printf ( "Yes" );
else
printf ( "No" );
return 0;
}
|
Java
import java.util.*;
class GFG
{
static class Node
{
int data;
Node left, right;
}
static Node newNode( int data)
{
Node node = new Node();
node.data = data;
node.left = node.right = null ;
return (node);
}
static boolean CheckChildrenSum(Node root)
{
Queue<Node> q = new LinkedList<Node>();
q.add(root);
while (q.size() > 0 )
{
Node temp = q.peek();
q.remove();
if (temp.left != null && temp.right != null )
{
if (temp.data != temp.left.data + temp.right.data)
return false ;
q.add(temp.left);
q.add(temp.right);
}
else if (temp.left == null && temp.right != null )
{
if (temp.data != temp.right.data)
return false ;
q.add(temp.right);
}
else if (temp.right == null && temp.left != null )
{
if (temp.data != temp.left.data)
return false ;
q.add(temp.left);
}
}
return true ;
}
public static void main(String args[])
{
Node root = newNode( 10 );
root.left = newNode( 8 );
root.right = newNode( 2 );
root.left.left = newNode( 3 );
root.left.right = newNode( 5 );
root.right.right = newNode( 2 );
if (CheckChildrenSum(root))
System.out.printf( "Yes" );
else
System.out.printf( "No" );
}
}
|
Python3
class Node:
def __init__( self , data):
self .data = data
self .left = None
self .right = None
def CheckChildrenSum(root):
q = []
q.append(root)
while len (q) ! = 0 :
temp = q.pop()
if temp.left and temp.right:
if (temp.data ! = temp.left.data +
temp.right.data):
return False
q.append(temp.left)
q.append(temp.right)
elif not temp.left and temp.right:
if temp.data ! = temp.right.data:
return False
q.append(temp.right)
elif not temp.right and temp.left:
if temp.data ! = temp.left.data:
return False
q.append(temp.left)
return True
if __name__ = = "__main__" :
root = Node( 10 )
root.left = Node( 8 )
root.right = Node( 2 )
root.left.left = Node( 3 )
root.left.right = Node( 5 )
root.right.right = Node( 2 )
if CheckChildrenSum(root):
print ( "Yes" )
else :
print ( "No" )
|
C#
using System;
using System.Collections.Generic;
class GFG
{
public class Node
{
public int data;
public Node left, right;
}
static Node newNode( int data)
{
Node node = new Node();
node.data = data;
node.left = node.right = null ;
return (node);
}
static Boolean CheckChildrenSum(Node root)
{
Queue<Node> q = new Queue<Node>();
q.Enqueue(root);
while (q.Count > 0)
{
Node temp = q.Peek();
q.Dequeue();
if (temp.left != null &&
temp.right != null )
{
if (temp.data != temp.left.data +
temp.right.data)
return false ;
q.Enqueue(temp.left);
q.Enqueue(temp.right);
}
else if (temp.left == null &&
temp.right != null )
{
if (temp.data != temp.right.data)
return false ;
q.Enqueue(temp.right);
}
else if (temp.right == null &&
temp.left != null )
{
if (temp.data != temp.left.data)
return false ;
q.Enqueue(temp.left);
}
}
return true ;
}
public static void Main(String []args)
{
Node root = newNode(10);
root.left = newNode(8);
root.right = newNode(2);
root.left.left = newNode(3);
root.left.right = newNode(5);
root.right.right = newNode(2);
if (CheckChildrenSum(root))
Console.WriteLine( "Yes" );
else
Console.WriteLine( "No" );
}
}
|
Javascript
<script>
class Node
{
constructor(data) {
this .left = null ;
this .right = null ;
this .data = data;
}
}
function newNode(data)
{
let node = new Node(data);
return (node);
}
function CheckChildrenSum(root)
{
let q = [];
q.push(root);
while (q.length > 0)
{
let temp = q[0];
q.shift();
if (temp.left != null && temp.right != null )
{
if (temp.data != temp.left.data + temp.right.data)
return false ;
q.push(temp.left);
q.push(temp.right);
}
else if (temp.left == null && temp.right != null )
{
if (temp.data != temp.right.data)
return false ;
q.push(temp.right);
}
else if (temp.right == null && temp.left != null )
{
if (temp.data != temp.left.data)
return false ;
q.push(temp.left);
}
}
return true ;
}
let root = newNode(10);
root.left = newNode(8);
root.right = newNode(2);
root.left.left = newNode(3);
root.left.right = newNode(5);
root.right.right = newNode(2);
if (CheckChildrenSum(root))
document.write( "Yes" );
else
document.write( "No" );
</script>
|
Time Complexity: O(N), where N is the total number of nodes in the binary tree.
Auxiliary Space: O(N)
Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!
Last Updated :
06 Aug, 2021
Like Article
Save Article