Skip to content
Related Articles

Related Articles

How to implement IIR Bandpass Butterworth Filter using Scipy – Python?
  • Last Updated : 13 Jan, 2021

IIR stands for Infinite Impulse Response, It is one of the striking features of many linear-time invariant systems that are distinguished by having an impulse response h(t)/h(n) which does not become zero after some point but instead continues infinitely.

What is IIR Bandpass Butterworth ?

It basically behaves just like an ordinary digital Bandpass Butterworth Filter with an infinite impulse response.

The specifications are as follows:  

  • Pass band frequency: 1400-2100 Hz
  • Stop band frequency: 1050-24500 Hz
  • Pass band ripple: 0.4dB
  • Stop band attenuation: 50 dB
  • Sampling frequency: 7 kHz

We will plot the magnitude, phase, impulse, step response of the filter.

Step-by-step Approach:



Step 1: Importing all the necessary libraries.

Python3




# import required library
import numpy as np
import scipy.signal as signal
import matplotlib.pyplot as plt

Step 2: Defining user defined functions mfreqz() and impz(). [mfreqz is a function for magnitude and phase plot & impz is function for impulse and step response]

Python3




def mfreqz(b, a, Fs):
    
    # Compute frequency response of the filter
    # using signal.freqz function
    wz, hz = signal.freqz(b, a)
  
    # Calculate Magnitude from hz in dB
    Mag = 20*np.log10(abs(hz))
  
    # Calculate phase angle in degree from hz
    Phase = np.unwrap(np.arctan2(np.imag(hz), np.real(hz)))*(180/np.pi)
  
    # Calculate frequency in Hz from wz
    Freq = wz*Fs/(2*np.pi)
  
    # Plot filter magnitude and phase responses using subplot.
    fig = plt.figure(figsize=(10, 6))
  
    # Plot Magnitude response
    sub1 = plt.subplot(2, 1, 1)
    sub1.plot(Freq, Mag, 'r', linewidth=2)
    sub1.axis([1, Fs/2, -100, 5])
    sub1.set_title('Magnitute Response', fontsize=20)
    sub1.set_xlabel('Frequency [Hz]', fontsize=20)
    sub1.set_ylabel('Magnitude [dB]', fontsize=20)
    sub1.grid()
  
    # Plot phase angle
    sub2 = plt.subplot(2, 1, 2)
    sub2.plot(Freq, Phase, 'g', linewidth=2)
    sub2.set_ylabel('Phase (degree)', fontsize=20)
    sub2.set_xlabel(r'Frequency (Hz)', fontsize=20)
    sub2.set_title(r'Phase response', fontsize=20)
    sub2.grid()
  
    plt.subplots_adjust(hspace=0.5)
    fig.tight_layout()
    plt.show()
  
# Define impz(b,a) to calculate impulse response 
# and step response of a system
# input: b= an array containing numerator coefficients,
# a= an array containing denominator coefficients
def impz(b, a):
      
    # Define the impulse sequence of length 60
    impulse = np.repeat(0., 60)
    impulse[0] = 1.
    x = np.arange(0, 60)
  
    # Compute the impulse response
    response = signal.lfilter(b, a, impulse)
  
    # Plot filter impulse and step response:
    fig = plt.figure(figsize=(10, 6))
    plt.subplot(211)
    plt.stem(x, response, 'm', use_line_collection=True)
    plt.ylabel('Amplitude', fontsize=15)
    plt.xlabel(r'n (samples)', fontsize=15)
    plt.title(r'Impulse response', fontsize=15)
  
    plt.subplot(212)
    step = np.cumsum(response)  # Compute step response of the system
  
    plt.stem(x, step, 'g', use_line_collection=True)
    plt.ylabel('Amplitude', fontsize=15)
    plt.xlabel(r'n (samples)', fontsize=15)
    plt.title(r'Step response', fontsize=15)
    plt.subplots_adjust(hspace=0.5)
  
    fig.tight_layout()
    plt.show()

Step 3:Define variables with the given specifications of the filter.

Python3




# Given specification
Fs = 7000  # Sampling frequency in Hz
fp = np.array([1400, 2100])  # Pass band frequency in Hz
fs = np.array([1050, 2450])  # Stop band frequency in Hz
Ap = 0.4  # Pass band ripple in dB
As = 50  # stop band attenuation in dB

Step 4: Computing the cut-off frequency

Python3






# Compute pass band and stop band edge frequencies
wp = fp/(Fs/2# Normalized passband edge frequencies w.r.t. Nyquist rate
ws = fs/(Fs/2# Normalized stopband edge frequencies

Step 5: Compute cut-off frequency & order

Python3




# Compute order of the digital Butterworth filter using signal.buttord
N, wc = signal.buttord(wp, ws, Ap, As, analog=True)
# Print the order of the filter and cutoff frequencies
print('Order of the filter=', N)
print('Cut-off frequency=', wc)

Output:

Step 6: Compute the filter co-efficient 

Python3




# Design digital Butterworth band pass
# filter using signal.butter function
z, p = signal.butter(N, wc, 'bandpass')
  
# Print numerator and denomerator 
# coefficients of the filter
print('Numerator Coefficients:', z)
print('Denominator Coefficients:', p)

Output:

Step 7: Compute frequency response using signal.freqz() function

Python3




# Compute frequency response of the filter using signal.freqz function
wz, hz = signal.freqz(z, p)

Step 8: Plotting the Magnitude & Phase Response

Python3




# Call mfreqz to plot the magnitude and phase response
mfreqz(z, p, Fs)

Output:

Step 9: Plotting the Impulse and Step Response

Python3




# Call impz function to plot impulse
# and step response of the filter
impz(z, p)

Output:

Below is the implementation:

Python3




# import required library
import numpy as np
import scipy.signal as signal
import matplotlib.pyplot as plt
  
# Compute magnitude and phase response
# using mfreqz function
def mfreqz(b, a, Fs):
  
    # Compute frequency response of the filter 
    # using signal.freqz function
    wz, hz = signal.freqz(b, a)
  
    # Calculate Magnitude from hz in dB
    Mag = 20*np.log10(abs(hz))
  
    # Calculate phase angle in degree from hz
    Phase = np.unwrap(np.arctan2(np.imag(hz), np.real(hz)))*(180/np.pi)
  
    # Calculate frequency in Hz from wz
    Freq = wz*Fs/(2*np.pi)
  
    # Plot filter magnitude and phase responses using subplot.
    fig = plt.figure(figsize=(10, 6))
  
    # Plot Magnitude response
    sub1 = plt.subplot(2, 1, 1)
    sub1.plot(Freq, Mag, 'r', linewidth=2)
    sub1.axis([1, Fs/2, -100, 5])
    sub1.set_title('Magnitute Response', fontsize=20)
    sub1.set_xlabel('Frequency [Hz]', fontsize=20)
    sub1.set_ylabel('Magnitude [dB]', fontsize=20)
    sub1.grid()
  
    # Plot phase angle
    sub2 = plt.subplot(2, 1, 2)
    sub2.plot(Freq, Phase, 'g', linewidth=2)
    sub2.set_ylabel('Phase (degree)', fontsize=20)
    sub2.set_xlabel(r'Frequency (Hz)', fontsize=20)
    sub2.set_title(r'Phase response', fontsize=20)
    sub2.grid()
  
    plt.subplots_adjust(hspace=0.5)
    fig.tight_layout()
    plt.show()
  
# Define impz(b,a) to calculate impulse response 
# and step response of a system
# input: b= an array containing numerator coefficients,
# a= an array containing denominator coefficients
def impz(b, a):
  
    # Define the impulse sequence of length 60
    impulse = np.repeat(0., 60)
    impulse[0] = 1.
    x = np.arange(0, 60)
  
    # Compute the impulse response
    response = signal.lfilter(b, a, impulse)
  
    # Plot filter impulse and step response:
    fig = plt.figure(figsize=(10, 6))
    plt.subplot(211)
    plt.stem(x, response, 'm', use_line_collection=True)
    plt.ylabel('Amplitude', fontsize=15)
    plt.xlabel(r'n (samples)', fontsize=15)
    plt.title(r'Impulse response', fontsize=15)
  
    plt.subplot(212)
    step = np.cumsum(response)  # Compute step response of the system
  
    plt.stem(x, step, 'g', use_line_collection=True)
    plt.ylabel('Amplitude', fontsize=15)
    plt.xlabel(r'n (samples)', fontsize=15)
    plt.title(r'Step response', fontsize=15)
    plt.subplots_adjust(hspace=0.5)
  
    fig.tight_layout()
    plt.show()
  
  
# Given specification
Fs = 7000  # Sampling frequency in Hz
fp = np.array([1400, 2100])  # Pass band frequency in Hz
fs = np.array([1050, 2450])  # Stop band frequency in Hz
Ap = 0.4  # Pass band ripple in dB
As = 50  # stop band attenuation in dB
  
  
# Compute pass band and stop band edge frequencies
wp = fp/(Fs/2# Normalized passband edge frequencies w.r.t. Nyquist rate
ws = fs/(Fs/2# Normalized stopband edge frequencies
  
# Compute order of the digital Butterworth filter using signal.buttord
N, wc = signal.buttord(wp, ws, Ap, As, analog=True)
  
# Print the order of the filter and cutoff frequencies
print('Order of the filter=', N)
print('Cut-off frequency=', wc)
  
# Design digital Butterworth band pass 
# filter using signal.butter function
z, p = signal.butter(N, wc, 'bandpass')
  
  
# Print numerator and denomerator 
# coefficients of the filter
print('Numerator Coefficients:', z)
print('Denominator Coefficients:', p)
  
# Compute frequency response of the filter 
# using signal.freqz function
wz, hz = signal.freqz(z, p)
  
# Call mfreqz to plot the magnitude and phase response
mfreqz(z, p, Fs)
  
# Call impz function to plot impulse 
# and step response of the filter
impz(z, p)

Output:


Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course.

My Personal Notes arrow_drop_up
Recommended Articles
Page :