Skip to content
Related Articles

Related Articles

Improve Article

How to Create Subplots in Matplotlib with Python?

  • Last Updated : 12 Nov, 2020

Prerequisite: Matplotlib 

In this article, we will learn how to add markers to a Graph Plot using Matplotlib with Python. For that one must be familiar with the following concepts: 

  • Matplotlib : Matplotlib is a tremendous visualization library in Python for 2D plots of arrays. Matplotlib may be a multi-platform data visualization library built on NumPy arrays and designed to figure with the broader SciPy stack. It was introduced by John Hunter within the year 2002.
  • Subplots : The matplotlib.pyplot.subplots() method provides a way to plot multiple plots on a single figure. Given the number of rows and columns, it returns a tuple (fig, ax), giving a single figure fig with an array of axes ax.

Approach

  • Import packages
  • Import or create some data
  • Create subplot objects.
  • Draw a plot with it.

Example 1:

Python3




# importing packages
import matplotlib.pyplot as plt
import numpy as np
  
# making subplots objects
fig, ax = plt.subplots(3, 3)
  
# draw graph
for i in ax:
    for j in i:
        j.plot(np.random.randint(0, 5, 5), np.random.randint(0, 5, 5))
  
plt.show()

Output :



Example 2 :

Python3




# importing packages
import matplotlib.pyplot as plt
import numpy as np
  
# making subplots objects
fig, ax = plt.subplots(2, 2)
  
# draw graph
ax[0][0].plot(np.random.randint(0, 5, 5), np.random.randint(0, 5, 5))
ax[0][1].plot(np.random.randint(0, 5, 5), np.random.randint(0, 5, 5))
ax[1][0].plot(np.random.randint(0, 5, 5), np.random.randint(0, 5, 5))
ax[1][1].plot(np.random.randint(0, 5, 5), np.random.randint(0, 5, 5))
  
plt.show()

Output :

Example 3 :

Python3




# importing packages
import matplotlib.pyplot as plt
import numpy as np
  
# making subplots objects
fig, ax = plt.subplots(2, 2)
  
# create data
x = np.linspace(0, 10, 1000)
  
# draw graph
ax[0, 0].plot(x, np.sin(x), 'r-.')
ax[0, 1].plot(x, np.cos(x), 'g--')
ax[1, 0].plot(x, np.tan(x), 'y-')
ax[1, 1].plot(x, np.sinc(x), 'c.-')
  
plt.show()

Output :

 Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.  

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course. And to begin with your Machine Learning Journey, join the Machine Learning – Basic Level Course




My Personal Notes arrow_drop_up
Recommended Articles
Page :