Open In App
Related Articles

How to compare values in two Pandas Dataframes?

Improve
Improve
Improve
Like Article
Like
Save Article
Save
Report issue
Report

Let’s discuss how to compare values in the Pandas dataframe. Here are the steps for comparing values in two pandas Dataframes:

Step 1 Dataframe Creation: The dataframes for the two datasets can be created using the following code: 

Python3

import pandas as pd
 
# elements of first dataset
first_Set = {'Prod_1': ['Laptop', 'Mobile Phone',
                        'Desktop', 'LED'],
             'Price_1': [25000, 8000, 20000, 35000]
             }
 
# creation of Dataframe 1
df1 = pd.DataFrame(first_Set, columns=['Prod_1', 'Price_1'])
print(df1)
 
# elements of second dataset
second_Set = {'Prod_2': ['Laptop', 'Mobile Phone',
                         'Desktop', 'LED'],
              'Price_2': [25000, 10000, 15000, 30000]
              }
 
# creation of Dataframe 2
df2 = pd.DataFrame(second_Set, columns=['Prod_2', 'Price_2'])
print(df2)

                    

Output:

pandas-comapre-value-2pandas-comapre-value-2

Step 2 Comparison of values: You need to import numpy for the successful execution of this step. Here is the general template to perform the comparison:

df1[‘new column for the comparison results’] = np.where(condition, ‘value if true’, ‘value if false’)

Example: After execution of this code, the new column with the name Price_Matching will be formed under df1. Columns result will be displayed according to the following conditions: 

  • If Price_1 is equal to Price_2, then assign the value of True
  • Otherwise, assign the value of False.

Python3

import numpy as np
 
# add the Price2 column from
# df2 to df1
df1['Price_2'] = df2['Price_2']
 
# create new column in df1 to
# check if prices match
df1['Price_Matching'] = np.where(df1['Price_1'] == df2['Price_2'],
                                 'True', 'False'
df1

                    

Output:

pandas-comapre-value-3

Last Updated : 12 Jan, 2022
Like Article
Save Article
Previous
Next
Share your thoughts in the comments
Similar Reads