Open In App
Related Articles

Ways to Create NaN Values in Pandas DataFrame

Improve
Improve
Improve
Like Article
Like
Save Article
Save
Report issue
Report
Let’s discuss ways of creating NaN values in the Pandas Dataframe. There are various ways to create NaN values in Pandas dataFrame. Those are:
  • Using NumPy
  • Importing csv file having blank values
  • Applying to_numeric function

Method 1: Using NumPy

Python3

import pandas as pd
import numpy as np
  
num = {'number': [1,2,np.nan,6,7,np.nan,np.nan]}
df = pd.DataFrame(num)
  
df

                    

Output: pandas-create-nan-11
Method 2: Importing the CSV file having blank instances Consider the below csv file named “Book1.csv”:

Code:

Python3

# import pandas
import pandas as pd
  
# read file
df = pd.read_csv("Book1.csv")
  
# print values
df

                    

Output: pandas-create-nan-2 You will get Nan values for blank instances.
Method 3: Applying to_numeric function

to_numeric function converts arguments to a numeric type.


Example:

Python3

import pandas as pd
  
num = {'data': [1,"hjghjd",3,"jxsh"]}
df = pd.DataFrame(num)
  
# this will convert non-numeric 
# values into NaN values
df = pd.to_numeric(df["data"], errors='coerce')
  
df

                    

Output: pandas-create-nan-4

Last Updated : 08 Dec, 2021
Like Article
Save Article
Previous
Next
Share your thoughts in the comments
Similar Reads