Given a string, print all possible palindromic partitions

Given a string, find all possible palindromic partitions of given string.

Example:
AllPalindromPArtition

Note that this problem is different from Palindrome Partitioning Problem, there the task was to find the partitioning with minimum cuts in input string. Here we need to print all possible partitions.

The idea is to go through every substring starting from first character, check if it is palindrome. If yes, then add the substring to solution and recur for remaining part. Below is complete algorithm.

Below is the implementation of above idea.

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ program to print all palindromic partitions of a given string
#include<bits/stdc++.h>
using namespace std;
  
// A utility function to check if str is palindroem
bool isPalindrome(string str, int low, int high)
{
    while (low < high)
    {
        if (str[low] != str[high])
            return false;
        low++;
        high--;
    }
    return true;
}
  
// Recursive function to find all palindromic partitions of str[start..n-1]
// allPart --> A vector of vector of strings. Every vector inside it stores
//             a partition
// currPart --> A vector of strings to store current partition 
void allPalPartUtil(vector<vector<string> >&allPart, vector<string> &currPart, 
                   int start, int n, string str)
{
    // If 'start' has reached len
    if (start >= n)
    {
        allPart.push_back(currPart);
        return;
    }
  
    // Pick all possible ending points for substrings
    for (int i=start; i<n; i++)
    {
        // If substring str[start..i] is palindrome
        if (isPalindrome(str, start, i))
        {
            // Add the substring to result
            currPart.push_back(str.substr(start, i-start+1));
  
            // Recur for remaining remaining substring
            allPalPartUtil(allPart, currPart, i+1, n, str);
              
            // Remove substring str[start..i] from current 
            // partition
            currPart.pop_back();
        }
    }
}
  
// Function to print all possible palindromic partitions of
// str. It mainly creates vectors and calls allPalPartUtil()
void allPalPartitions(string str)
{
    int n = str.length();
  
    // To Store all palindromic partitions
    vector<vector<string> > allPart;
  
    // To store current palindromic partition
    vector<string> currPart; 
  
    // Call recursive function to generate all partiions
    // and store in allPart
    allPalPartUtil(allPart, currPart, 0, n, str);
  
    // Print all partitions generated by above call
    for (int i=0; i< allPart.size(); i++ )
    {
        for (int j=0; j<allPart[i].size(); j++)
            cout << allPart[i][j] << " ";
        cout << "\n";
    }
}
  
// Driver program
int main()
{
    string str = "nitin";
    allPalPartitions(str);
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program to print all palindromic
// partitions of a given string 
import java.util.ArrayList;
import java.util.Deque;
import java.util.LinkedList;
  
public class PrintAllPalindrome
{
    // Driver program
    public static void main(String[] args) 
    {
        String input = "nitin";
  
        System.out.println("All possible palindrome"
                            "partions for " + input 
                            + " are :");
  
        allPalPartitions(input);
    }
  
    // Function to print all possible
    // palindromic partitions of str.
    // It mainly creates vectors and
    // calls allPalPartUtil()
    private static void allPalPartitions(String input) 
    {
        int n = input.length();
  
        // To Store all palindromic partitions
        ArrayList<ArrayList<String>> allPart = new ArrayList<>();
  
        // To store current palindromic partition
        Deque<String> currPart = new LinkedList<String>();
  
        // Call recursive function to generate 
        // all partiions and store in allPart
        allPalPartitonsUtil(allPart, currPart, 0, n, input);
  
        // Print all partitions generated by above call
        for (int i = 0; i < allPart.size(); i++) 
        {
            for (int j = 0; j < allPart.get(i).size(); j++)
            {
                System.out.print(allPart.get(i).get(j) + " ");
            }
            System.out.println();
        }
  
    }
  
    // Recursive function to find all palindromic
    // partitions of input[start..n-1] allPart --> A
    // ArrayList of Deque of strings. Every Deque
    // inside it stores a partition currPart --> A
    // Deque of strings to store current partition
    private static void allPalPartitonsUtil(ArrayList<ArrayList<String>> allPart, 
            Deque<String> currPart, int start, int n, String input)
    {
        // If 'start' has reached len
        if (start >= n) 
        {
            allPart.add(new ArrayList<>(currPart));
            return;
        }
  
        // Pick all possible ending points for substrings
        for (int i = start; i < n; i++) 
        {
              
            // If substring str[start..i] is palindrome
            if (isPalindrome(input, start, i))
            {
                  
                // Add the substring to result
                currPart.addLast(input.substring(start, i + 1));
  
                // Recur for remaining remaining substring
                allPalPartitonsUtil(allPart, currPart, i + 1, n, input);
  
                // Remove substring str[start..i] from current
                // partition
                currPart.removeLast();
            }
        }
    }
  
    // A utility function to check 
    // if input is Palindrome
    private static boolean isPalindrome(String input, 
                                    int start, int i)
    {
        while (start < i) 
        {
            if (input.charAt(start++) != input.charAt(i--))
                return false;
        }
        return true;
    }
}
  
// This code is contributed by Prerna Saini

chevron_right


Output:

n i t i n
n iti n
nitin

This article is contributed by Ekta Goel. Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.



My Personal Notes arrow_drop_up

Improved By : ShashwatSingh