In this article, we will discuss QR decomposition or QR factorization of a matrix. QR factorization of a matrix is the decomposition of a matrix say ‘A’ into ‘A=QR’ where Q is orthogonal and R is an upper-triangular matrix. We factorize the matrix using numpy.linalg.qr() function.
Syntax : numpy.linalg.qr(a, mode=’reduced’)
Parameters :
- a : matrix(M,N) which needs to be factored.
- mode : it is optional. It can be :
Below are some examples of how to use the above-described function :
Example 1: QR factorization of 2X2 matrix
Python3
# Import numpy package import numpy as np # Create a numpy array arr = np.array([[ 10 , 22 ],[ 13 , 6 ]]) # Find the QR factor of array q, r = np.linalg.qr(arr) # Print the result print ( "Decomposition of matrix:" ) print ( "q=\n" , q, "\nr=\n" , r) |
Output :
Example 2: QR factorization of 2X4 matrix
Python3
# Import numpy package import numpy as np # Create a numpy array arr = np.array([[ 0 , 1 ], [ 1 , 0 ], [ 1 , 1 ], [ 2 , 2 ]]) # Find the QR factor of array q, r = np.linalg.qr(arr) # Print the result print ( "Decomposition of matrix:" ) print ( "q=\n" , q, "\nr=\n" , r) |
Output :
Example 3: QR factorization of 3X3 matrix
Python3
# Import numpy package import numpy as np # Create a numpy array arr = np.array([[ 5 , 11 , - 15 ], [ 12 , 34 , - 51 ], [ - 24 , - 43 , 92 ]], dtype = np.int32) # Find the QR factor of array q, r = np.linalg.qr(arr) # Print the result print ( "Decomposition of matrix:" ) print ( "q=\n" , q, "\nr=\n" , r) |
Output :
Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.
To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course.