Given an array arr[] of N elements, the task is to find the GCD of the elements which have prime frequencies in the array. Note that 1 is neither prime nor composite.
Examples:
Input: arr[] = {5, 4, 6, 5, 4, 6}
Output: 1
All the elements appear 2 times which is a prime
So, gcd(5, 4, 6) = 1Input: arr[] = {4, 8, 8, 1, 4, 3, 0}
Output: 4
Approach:
- Traverse the array and store the frequencies of all the elements in a map.
- Build Sieve of Eratosthenes which will be used to test the primality of a number in O(1) time.
- Calculate the gcd of elements having prime frequency using the Sieve array calculated in the previous step.
Below is the implementation of the above approach:
C++
// C++ implementation of the approach #include <bits/stdc++.h> using namespace std; // Function to create Sieve to check primes void SieveOfEratosthenes( bool prime[], int p_size) { // False here indicates // that it is not prime prime[0] = false ; prime[1] = false ; for ( int p = 2; p * p <= p_size; p++) { // If prime[p] is not changed, // then it is a prime if (prime[p]) { // Update all multiples of p, // set them to non-prime for ( int i = p * 2; i <= p_size; i += p) prime[i] = false ; } } } // Function to return the GCD of elements // in an array having prime frequency int gcdPrimeFreq( int arr[], int n) { bool prime[n + 1]; memset (prime, true , sizeof (prime)); SieveOfEratosthenes(prime, n + 1); int i, j; // Map is used to store // element frequencies unordered_map< int , int > m; for (i = 0; i < n; i++) m[arr[i]]++; int gcd = 0; // Traverse the map using iterators for ( auto it = m.begin(); it != m.end(); it++) { // Count the number of elements // having prime frequencies if (prime[it->second]) { gcd = __gcd(gcd, it->first); } } return gcd; } // Driver code int main() { int arr[] = { 5, 4, 6, 5, 4, 6 }; int n = sizeof (arr) / sizeof (arr[0]); cout << gcdPrimeFreq(arr, n); return 0; } |
Java
// Java implementation of the approach import java.util.*; class GFG { // Function to create Sieve to check primes static void SieveOfEratosthenes( boolean prime[], int p_size) { // False here indicates // that it is not prime prime[ 0 ] = false ; prime[ 1 ] = false ; for ( int p = 2 ; p * p <= p_size; p++) { // If prime[p] is not changed, // then it is a prime if (prime[p]) { // Update all multiples of p, // set them to non-prime for ( int i = p * 2 ; i <= p_size; i += p) prime[i] = false ; } } } // Function to return the GCD of elements // in an array having prime frequency static int gcdPrimeFreq( int arr[], int n) { boolean []prime = new boolean [n + 1 ]; for ( int i = 0 ; i < n + 1 ; i++) prime[i] = true ; SieveOfEratosthenes(prime, n + 1 ); int i, j; // Map is used to store // element frequencies HashMap<Integer, Integer> mp = new HashMap<Integer, Integer>(); for (i = 0 ; i < n; i++) { if (mp.containsKey(arr[i])) { mp.put(arr[i], mp.get(arr[i]) + 1 ); } else { mp.put(arr[i], 1 ); } } int gcd = 0 ; // Traverse the map using iterators for (Map.Entry<Integer, Integer> it : mp.entrySet()) { // Count the number of elements // having prime frequencies if (prime[it.getValue()]) { gcd = __gcd(gcd, it.getKey()); } } return gcd; } static int __gcd( int a, int b) { if (b == 0 ) return a; return __gcd(b, a % b); } // Driver code static public void main ( String []arg) { int arr[] = { 5 , 4 , 6 , 5 , 4 , 6 }; int n = arr.length; System.out.println(gcdPrimeFreq(arr, n)); } } // This code is contributed by Rajput-Ji |
Python3
# Python3 implementation of the approach from math import sqrt, gcd # Function to create Sieve to check primes def SieveOfEratosthenes(prime, p_size) : # False here indicates # that it is not prime prime[ 0 ] = False ; prime[ 1 ] = False ; for p in range ( 2 , int (sqrt(p_size)) + 1 ) : # If prime[p] is not changed, # then it is a prime if (prime[p]) : # Update all multiples of p, # set them to non-prime for i in range ( 2 * p, p_size, p) : prime[i] = False ; # Function to return the GCD of elements # in an array having prime frequency def gcdPrimeFreq(arr, n) : prime = [ True ] * (n + 1 ); SieveOfEratosthenes(prime, n + 1 ); # Map is used to store # element frequencies m = dict .fromkeys(arr, 0 ); for i in range (n) : m[arr[i]] + = 1 ; __gcd = 0 ; # Traverse the map using iterators for key,value in m.items() : # Count the number of elements # having prime frequencies if (prime[value]) : __gcd = gcd(__gcd, key); return __gcd; # Driver code if __name__ = = "__main__" : arr = [ 5 , 4 , 6 , 5 , 4 , 6 ]; n = len (arr); print (gcdPrimeFreq(arr, n)); # This code is contributed by AnkitRai01 |
C#
// C# implementation of the approach using System; using System.Collections.Generic; class GFG { // Function to create Sieve to check primes static void SieveOfEratosthenes( bool []prime, int p_size) { // False here indicates // that it is not prime prime[0] = false ; prime[1] = false ; for ( int p = 2; p * p <= p_size; p++) { // If prime[p] is not changed, // then it is a prime if (prime[p]) { // Update all multiples of p, // set them to non-prime for ( int i = p * 2; i <= p_size; i += p) prime[i] = false ; } } } // Function to return the GCD of elements // in an array having prime frequency static int gcdPrimeFreq( int []arr, int n) { int i; bool []prime = new bool [n + 1]; for (i = 0; i < n + 1; i++) prime[i] = true ; SieveOfEratosthenes(prime, n + 1); // Map is used to store // element frequencies Dictionary< int , int > mp = new Dictionary< int , int >(); for (i = 0 ; i < n; i++) { if (mp.ContainsKey(arr[i])) { var val = mp[arr[i]]; mp.Remove(arr[i]); mp.Add(arr[i], val + 1); } else { mp.Add(arr[i], 1); } } int gcd = 0; // Traverse the map using iterators foreach (KeyValuePair< int , int > it in mp) { // Count the number of elements // having prime frequencies if (prime[it.Value]) { gcd = __gcd(gcd, it.Key); } } return gcd; } static int __gcd( int a, int b) { if (b == 0) return a; return __gcd(b, a % b); } // Driver code static public void Main ( String []arg) { int []arr = { 5, 4, 6, 5, 4, 6 }; int n = arr.Length; Console.WriteLine(gcdPrimeFreq(arr, n)); } } // This code is contributed by Princi Singh |
1
Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.