Given an array of integers, you have to find three numbers such that the sum of two elements equals the third element.
Examples:
Input : {5, 32, 1, 7, 10, 50, 19, 21, 2}
Output : 21, 2, 19
Input : {5, 32, 1, 7, 10, 50, 19, 21, 0}
Output : no such triplet exist
Question source: Arcesium Interview Experience | Set 7 (On campus for Internship)
Simple approach: Run three loops and check if there exists a triplet such that sum of two elements equals the third element.
Code-
C++
#include <bits/stdc++.h>
using namespace std;
void findTriplet( int arr[], int n)
{
for ( int i = 0; i < n; i++) {
for ( int j = i + 1; j < n; j++) {
for ( int k = j + 1; k < n; k++) {
if ((arr[i]+arr[j]==arr[k]) || (arr[i]+arr[k]==arr[j]) || (arr[j]+arr[k]==arr[i])){
cout << "Numbers are: " << arr[i] << " "
<< arr[j] << " " << arr[k];
return ;
}
}
}
}
cout << "No such triplet exists" ;
}
int main()
{
int arr[] = { 5, 32, 1, 7, 10, 50, 19, 21, 2 };
int n = sizeof (arr) / sizeof (arr[0]);
findTriplet(arr, n);
return 0;
}
|
Java
import java.util.*;
public class Main {
public static void findTriplet( int [] arr, int n) {
for ( int i = 0 ; i < n; i++) {
for ( int j = i + 1 ; j < n; j++) {
for ( int k = j + 1 ; k < n; k++) {
if ((arr[i]+arr[j]==arr[k]) || (arr[i]+arr[k]==arr[j]) || (arr[j]+arr[k]==arr[i])) {
System.out.println( "Numbers are: " + arr[i] + " " + arr[j] + " " + arr[k]);
return ;
}
}
}
}
System.out.println( "No such triplet exists" );
}
public static void main(String[] args) {
int [] arr = { 5 , 32 , 1 , 7 , 10 , 50 , 19 , 21 , 2 };
int n = arr.length;
findTriplet(arr, n);
}
}
|
Python3
def findTriplet(arr, n):
for i in range (n):
for j in range (i + 1 , n):
for k in range (j + 1 , n):
if ((arr[i] + arr[j] = = arr[k]) or (arr[i] + arr[k] = = arr[j]) or (arr[j] + arr[k] = = arr[i])):
print ( "Numbers are:" , arr[i], arr[j], arr[k])
return
print ( "No such triplet exists" )
if __name__ = = '__main__' :
arr = [ 5 , 32 , 1 , 7 , 10 , 50 , 19 , 21 , 2 ]
n = len (arr)
findTriplet(arr, n)
|
C#
using System;
public class MainClass {
public static void FindTriplet( int [] arr, int n)
{
for ( int i = 0; i < n; i++) {
for ( int j = i + 1; j < n; j++) {
for ( int k = j + 1; k < n; k++) {
if ((arr[i] + arr[j] == arr[k])
|| (arr[i] + arr[k] == arr[j])
|| (arr[j] + arr[k] == arr[i])) {
Console.WriteLine(
"Numbers are: " + arr[i] + " "
+ arr[j] + " " + arr[k]);
return ;
}
}
}
}
Console.WriteLine( "No such triplet exists" );
}
public static void Main()
{
int [] arr = { 5, 32, 1, 7, 10, 50, 19, 21, 2 };
int n = arr.Length;
FindTriplet(arr, n);
}
}
|
Javascript
function findTriplet(arr) {
const n = arr.length;
for (let i = 0; i < n; i++) {
for (let j = i + 1; j < n; j++) {
for (let k = j + 1; k < n; k++) {
if (
arr[i] + arr[j] === arr[k] ||
arr[i] + arr[k] === arr[j] ||
arr[j] + arr[k] === arr[i]
) {
console.log(`Numbers are: ${arr[i]}, ${arr[j]}, ${arr[k]}`);
return ;
}
}
}
}
console.log( "No such triplet exists" );
}
const arr = [5, 32, 1, 7, 10, 50, 19, 21, 2];
findTriplet(arr);
|
Output
Numbers are: 5 7 2
Time Complexity: O(N^3)
Auxiliary Space: O(1)
Efficient approach: The idea is similar to Find a triplet that sum to a given value.
- Sort the given array first.
- Start fixing the greatest element of three from the back and traverse the array to find the other two numbers which sum up to the third element.
- Take two pointers j(from front) and k(initially i-1) to find the smallest of the two number and from i-1 to find the largest of the two remaining numbers
- If the addition of both the numbers is still less than A[i], then we need to increase the value of the summation of two numbers, thereby increasing the j pointer, so as to increase the value of A[j] + A[k].
- If the addition of both the numbers is more than A[i], then we need to decrease the value of the summation of two numbers, thereby decrease the k pointer so as to decrease the overall value of A[j] + A[k].
Below image is a dry run of the above approach:

Below is the implementation of the above approach:
C++
#include <bits/stdc++.h>
using namespace std;
void findTriplet( int arr[], int n)
{
sort(arr, arr + n);
for ( int i = n - 1; i >= 0; i--) {
int j = 0;
int k = i - 1;
while (j < k) {
if (arr[i] == arr[j] + arr[k]) {
cout << "numbers are " << arr[i] << " "
<< arr[j] << " " << arr[k] << endl;
return ;
}
else if (arr[i] > arr[j] + arr[k])
j += 1;
else
k -= 1;
}
}
cout << "No such triplet exists" ;
}
int main()
{
int arr[] = { 5, 32, 1, 7, 10, 50, 19, 21, 2 };
int n = sizeof (arr) / sizeof (arr[0]);
findTriplet(arr, n);
return 0;
}
|
Java
import java.util.Arrays;
public class GFG {
static void findTriplet( int arr[], int n)
{
Arrays.sort(arr);
for ( int i = n - 1 ; i >= 0 ; i--) {
int j = 0 ;
int k = i - 1 ;
while (j < k) {
if (arr[i] == arr[j] + arr[k]) {
System.out.println( "numbers are " + arr[i] + " "
+ arr[j] + " " + arr[k]);
return ;
}
else if (arr[i] > arr[j] + arr[k])
j += 1 ;
else
k -= 1 ;
}
}
System.out.println( "No such triplet exists" );
}
public static void main(String args[])
{
int arr[] = { 5 , 32 , 1 , 7 , 10 , 50 , 19 , 21 , 2 };
int n = arr.length;
findTriplet(arr, n);
}
}
|
Python
def findTriplet(arr, n):
arr.sort()
i = n - 1
while (i > = 0 ):
j = 0
k = i - 1
while (j < k):
if (arr[i] = = arr[j] + arr[k]):
print "numbers are " , arr[i], arr[j], arr[k]
return
elif (arr[i] > arr[j] + arr[k]):
j + = 1
else :
k - = 1
i - = 1
print "No such triplet exists"
arr = [ 5 , 32 , 1 , 7 , 10 , 50 , 19 , 21 , 2 ]
n = len (arr)
findTriplet(arr, n)
|
C#
using System;
public class GFG {
static void findTriplet( int [] arr, int n)
{
Array.Sort(arr);
for ( int i = n - 1; i >= 0; i--) {
int j = 0;
int k = i - 1;
while (j < k) {
if (arr[i] == arr[j] + arr[k]) {
Console.WriteLine( "numbers are "
+ arr[i] + " " + arr[j]
+ " " + arr[k]);
return ;
}
else if (arr[i] > arr[j] + arr[k])
j += 1;
else
k -= 1;
}
}
Console.WriteLine( "No such triplet exists" );
}
public static void Main()
{
int [] arr = { 5, 32, 1, 7, 10, 50,
19, 21, 2 };
int n = arr.Length;
findTriplet(arr, n);
}
}
|
PHP
<?php
function findTriplet( $arr , $n )
{
sort( $arr );
for ( $i = $n - 1; $i >= 0; $i --)
{
$j = 0;
$k = $i - 1;
while ( $j < $k )
{
if ( $arr [ $i ] == $arr [ $j ] + $arr [ $k ])
{
echo "numbers are " , $arr [ $i ], " " ,
$arr [ $j ], " " ,
$arr [ $k ];
return ;
}
else if ( $arr [ $i ] > $arr [ $j ] +
$arr [ $k ])
$j += 1;
else
$k -= 1;
}
}
echo "No such triplet exists" ;
}
$arr = array (5, 32, 1, 7, 10,
50, 19, 21, 2 );
$n = count ( $arr );
findTriplet( $arr , $n );
?>
|
Javascript
<script>
function findTriplet(arr, n)
{
arr.sort((a,b) => a-b);
for (let i = n - 1; i >= 0; i--) {
let j = 0;
let k = i - 1;
while (j < k) {
if (arr[i] == arr[j] + arr[k]) {
document.write( "numbers are " + arr[i] +
" " + arr[j] + " " + arr[k] + "<br>" );
return ;
}
else if (arr[i] > arr[j] + arr[k])
j += 1;
else
k -= 1;
}
}
document.write( "No such triplet exists" );
}
let arr = [ 5, 32, 1, 7, 10, 50, 19, 21, 2 ];
let n = arr.length;
findTriplet(arr, n);
</script>
|
Output
numbers are 21 2 19
Time Complexity: O(N^2)
Auxiliary Space: O(1)
Another Approach: The idea is similar to previous approach:
- Sort the given array.
- Start a nested loop, fixing the first element i(from 0 to n-1) and moving the other one j (from i+1 to n-1).
- Take the sum of both the elements and search it in the remaining array using Binary Search.
Implementation:
C++
#include <bits/stdc++.h>
#include <iostream>
using namespace std;
bool search( int sum, int start, int end, int arr[])
{
while (start <= end) {
int mid = (start + end) / 2;
if (arr[mid] == sum) {
return true ;
}
else if (arr[mid] > sum) {
end = mid - 1;
}
else {
start = mid + 1;
}
}
return false ;
}
void findTriplet( int arr[], int n)
{
sort(arr, arr + n);
for ( int i = 0; i < n; i++) {
for ( int j = i + 1; j < n; j++) {
if (search((arr[i] + arr[j]), j, n - 1, arr)) {
cout << "Numbers are: " << arr[i] << " "
<< arr[j] << " " << (arr[i] + arr[j]);
return ;
}
}
}
cout << "No such numbers exist" << endl;
}
int main()
{
int arr[] = { 5, 32, 1, 7, 10, 50, 19, 21, 2 };
int n = sizeof (arr) / sizeof (arr[0]);
findTriplet(arr, n);
return 0;
}
|
Java
import java.util.*;
class GFG{
static boolean search( int sum, int start,
int end, int arr[])
{
while (start <= end)
{
int mid = (start + end) / 2 ;
if (arr[mid] == sum)
{
return true ;
}
else if (arr[mid] > sum)
{
end = mid - 1 ;
}
else
{
start = mid + 1 ;
}
}
return false ;
}
static void findTriplet( int arr[], int n)
{
Arrays.sort(arr);
for ( int i = 0 ; i < n; i++)
{
for ( int j = i + 1 ; j < n; j++)
{
if (search((arr[i] + arr[j]), j, n - 1 , arr))
{
System.out.print( "Numbers are: " + arr[i] + " " +
arr[j] + " " + (arr[i] + arr[j]));
return ;
}
}
}
System.out.print( "No such numbers exist" );
}
public static void main(String args[])
{
int arr[] = { 5 , 32 , 1 , 7 , 10 , 50 , 19 , 21 , 2 };
int n = arr.length;
findTriplet(arr, n);
}
}
|
Python3
from functools import cmp_to_key
def mycmp(a, b):
return a - b
def search( sum , start, end, arr):
while (start < = end):
mid = (start + end) / / 2
if (arr[mid] = = sum ):
return True
elif (arr[mid] > sum ):
end = mid - 1
else :
start = mid + 1
return False
def findTriplet(arr, n):
arr.sort(key = cmp_to_key(mycmp))
for i in range (n):
for j in range (i + 1 ,n):
if (search((arr[i] + arr[j]), j, n - 1 , arr)):
print (f "numbers are {arr[i]} {arr[j]} {( arr[i] + arr[j] )}" )
return
print ( "No such triplet exists" )
arr = [ 5 , 32 , 1 , 7 , 10 , 50 , 19 , 21 , 2 ]
n = len (arr)
findTriplet(arr, n)
|
C#
using System;
public class GFG {
static bool search( int sum, int start, int end, int [] arr)
{
while (start <= end) {
int mid = (start + end) / 2;
if (arr[mid] == sum) {
return true ;
}
else if (arr[mid] > sum) {
end = mid - 1;
}
else {
start = mid + 1;
}
}
return false ;
}
static void findTriplet( int [] arr, int n)
{
Array.Sort(arr);
for ( int i = 0; i < n; i++) {
for ( int j=i+1;j<n;j++)
{
if (search((arr[i] + arr[j]), j, n - 1, arr)) {
Console.WriteLine( "Numbers are "
+ arr[i] + " " + arr[j]
+ " " + (arr[i]+arr[j]));
return ;
}
}
}
Console.WriteLine( "No such triplet exists" );
}
public static void Main()
{
int [] arr = { 5, 32, 1, 7, 10, 50,
19, 21, 2 };
int n = arr.Length;
findTriplet(arr, n);
}
}
|
Javascript
<script>
bool search(sum, start, end, arr)
{
while (start <= end) {
let mid = (start + end) / 2;
if (arr[mid] == sum) {
return true ;
}
else if (arr[mid] > sum) {
end = mid - 1;
}
else {
start = mid + 1;
}
}
return false ;
}
function findTriplet(arr, n)
{
arr.sort((a,b) => a-b);
for (let i = 0; i < n; i++) {
for (let j = i + 1; j < n; j++) {
if (search((arr[i] + arr[j]), j, n - 1, arr)) {
document.write( "numbers are " + arr[i] +
" " + arr[j] + " " + ( arr[i] + arr[j] ) + "<br>" );
}
}
}
document.write( "No such triplet exists" );
}
let arr = [ 5, 32, 1, 7, 10, 50, 19, 21, 2 ];
let n = arr.length;
findTriplet(arr, n);
</script>
|
Output
Numbers are: 2 5 7
Time Complexity: O(N^2*log N)
Auxiliary Space: O(1)
If you like GeeksforGeeks and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!
Last Updated :
19 Sep, 2023
Like Article
Save Article