Find the type of triangle from the given sides

Given three integers A, B, and C which denotes the sides of a triangle, the task is to check that the triangle is a right-angled, acute-angled or obtuse-angled triangle.

Examples:

Input: A = 1, B = 4, C = 3
Output: Obtuse-angled Triangle
Explanation:
Triangle with the sides 1, 2 and 3 is an obtuse-angled triangle

Input: A = 2, B = 2, C = 2
Output: Acute-angled Triangle
Explanation:
Triangle with the sides 2, 2, and 2 is an acute-angled triangle

Approach: The idea is to use the facts from the cosine law to check the type of triangle using this formulae –
 c^2 &= a^2 + b^2 - 2*a*b*cos\gamma
It generalizes the Pythagorean Theorum, which states that for a right-angled triangle square of the hypotenuse is equal to the sum of squares of the base and height of the triangle, which is c^2 &= a^2 + b^2



Similarly, It can be observed that
For acute-angled triangle
c^2 \textless a^2 + b^2
For Obtuse-angled triangle
c^2 \textgreater a^2 + b^2

Below is the implementation of the above approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ implementation to find
// the type of triangle with
// the help of the sides
  
#include <bits/stdc++.h>
using namespace std;
  
// Function to find the type of
// triangle with the help of sides
void checkTypeOfTriangle(int a, 
                int b, int c){
    int sqa = pow(a, 2);
    int sqb = pow(b, 2);
    int sqc = pow(c, 2);
      
    if (sqa == sqa + sqb || 
        sqb == sqa + sqc || 
        sqc == sqa + sqb){
        cout << "Right-angled Triangle";
    }
    else if(sqa > sqc + sqb ||
            sqb > sqa + sqc ||
            sqc > sqa + sqb){
        cout << "Obtuse-angled Triangle";
    }
    else{
        cout << "Acute-angled Triangle";
    }
}
  
// Driver Code
int main()
{
    int a, b, c;
    a = 2;
    b = 2; 
    c = 2;
      
    // Function Call
    checkTypeOfTriangle(a, b, c);
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java implementation to find
// the type of triangle with
// the help of the sides
import java.util.*;
  
class GFG
{
  
// Function to find the type of
// triangle with the help of sides
static void checkTypeOfTriangle(int a, 
                int b, int c){
    int sqa = (int)Math.pow(a, 2);
    int sqb = (int)Math.pow(b, 2);
    int sqc = (int)Math.pow(c, 2);
      
    if (sqa == sqa + sqb || 
        sqb == sqa + sqc || 
        sqc == sqa + sqb){
        System.out.print("Right-angled Triangle");
    }
    else if(sqa > sqc + sqb ||
            sqb > sqa + sqc ||
            sqc > sqa + sqb){
        System.out.print("Obtuse-angled Triangle");
    }
    else{
        System.out.print( "Acute-angled Triangle");
    }
}
  
// Driver Code 
public static void main (String []args)
{
    int a, b, c;
    a = 2;
    b = 2
    c = 2;
      
    // Function Call
    checkTypeOfTriangle(a, b, c);
}
}
  
// This code is contribute by chitranayal

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 implementation to find
# the type of triangle with
# the help of the sides
  
# Function to find the type of
# triangle with the help of sides
def checkTypeOfTriangle(a,b,c):
    sqa = pow(a, 2)
    sqb = pow(b, 2)
    sqc = pow(c, 2)
  
    if (sqa == sqa + sqb or
        sqb == sqa + sqc or
        sqc == sqa + sqb):
        print("Right-angled Triangle")
  
    elif(sqa > sqc + sqb or
            sqb > sqa + sqc or
            sqc > sqa + sqb):
        print("Obtuse-angled Triangle")
  
    else:
        print("Acute-angled Triangle")
  
# Driver Code
if __name__ == '__main__':
    a = 2
    b = 2
    c = 2
  
    # Function Call
    checkTypeOfTriangle(a, b, c)
  
# This code is contributed by mohit kumar 29

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# implementation to find
// the type of triangle with
// the help of the sides
using System;
  
class GFG
{
   
// Function to find the type of
// triangle with the help of sides
static void checkTypeOfTriangle(int a, 
                int b, int c){
    int sqa = (int)Math.Pow(a, 2);
    int sqb = (int)Math.Pow(b, 2);
    int sqc = (int)Math.Pow(c, 2);
       
    if (sqa == sqa + sqb || 
        sqb == sqa + sqc || 
        sqc == sqa + sqb){
        Console.Write("Right-angled Triangle");
    }
    else if(sqa > sqc + sqb ||
            sqb > sqa + sqc ||
            sqc > sqa + sqb){
        Console.Write("Obtuse-angled Triangle");
    }
    else{
        Console.Write( "Acute-angled Triangle");
    }
}
   
// Driver Code 
public static void Main(String []args)
{
    int a, b, c;
    a = 2;
    b = 2; 
    c = 2;
       
    // Function Call
    checkTypeOfTriangle(a, b, c);
}
}
  
// This code is contributed by 29AjayKumar

chevron_right


Output:

Acute-angled Triangle

Don’t stop now and take your learning to the next level. Learn all the important concepts of Data Structures and Algorithms with the help of the most trusted course: DSA Self Paced. Become industry ready at a student-friendly price.




My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.