Given a number N, the task is to find the sum of the first N Centered Hexadecagonal Number.
The first few Centered Hexadecagonal Numbers are 1, 17, 49, 97, 161, 241 …
Examples:
Input: N = 3
Output: 67
Explanation:
1, 17 and 49 are the first three centered Hexadecagonal numbers.
Input: N = 5
Output: 325
Approach:
- Initially, we need to create a function which will help us to calculate the Nth Centered Hexadecagonal number.
- Now, we run a loop starting from 1 to N, to find ith Centered Hexadecagonal number.
- Add all the above calculated Centered Hexadecagonal numbers.
- Finally, display the sum of 1st N Centered Hexadecagonal numbers.
Below is the implementation of the above approach:
C++
#include <bits/stdc++.h>
using namespace std;
int Centered_Hexadecagonal_num( int n)
{
return (8 * n * n - 8 * n + 1);
}
int sum_Centered_Hexadecagonal_num( int n)
{
int summ = 0;
for ( int i = 1; i < n + 1; i++)
{
summ += Centered_Hexadecagonal_num(i);
}
return summ;
}
int main()
{
int n = 5;
cout << sum_Centered_Hexadecagonal_num(n);
}
|
Java
class GFG{
public static int Centered_Hexadecagonal_num( int n)
{
return ( 8 * n * n - 8 * n + 1 );
}
public static int sum_Centered_Hexadecagonal_num( int n)
{
int summ = 0 ;
for ( int i = 1 ; i < n + 1 ; i++)
{
summ += Centered_Hexadecagonal_num(i);
}
return summ;
}
public static void main(String[] args)
{
int n = 5 ;
System.out.println(sum_Centered_Hexadecagonal_num(n));
}
}
|
Python3
def Centered_Hexadecagonal_num(n):
return ( 8 * n * n -
8 * n + 1 )
def sum_Centered_Hexadecagonal_num(n) :
summ = 0
for i in range ( 1 , n + 1 ):
summ + = Centered_Hexadecagonal_num(i)
return summ
if __name__ = = '__main__' :
n = 5
print (sum_Centered_Hexadecagonal_num(n))
|
C#
using System;
class GFG{
public static int Centered_Hexadecagonal_num( int n)
{
return (8 * n * n - 8 * n + 1);
}
public static int sum_Centered_Hexadecagonal_num( int n)
{
int summ = 0;
for ( int i = 1; i < n + 1; i++)
{
summ += Centered_Hexadecagonal_num(i);
}
return summ;
}
public static void Main()
{
int n = 5;
Console.Write(sum_Centered_Hexadecagonal_num(n));
}
}
|
Javascript
<script>
function Centered_Hexadecagonal_num(n)
{
return (8 * n * n - 8 * n + 1);
}
function sum_Centered_Hexadecagonal_num(n)
{
let summ = 0;
for (let i = 1; i < n + 1; i++)
{
summ += Centered_Hexadecagonal_num(i);
}
return summ;
}
let n = 5;
document.write(sum_Centered_Hexadecagonal_num(n));
</script>
|
Time Complexity: O(N)
Auxiliary Space: O(1) as it is using constant space for variables
Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!