Open In App
Related Articles

Find the sum of the first Nth Centered Hexadecagonal Number

Improve Article
Improve
Save Article
Save
Like Article
Like

Given a number N, the task is to find the sum of the first N Centered Hexadecagonal Number.
 

The first few Centered Hexadecagonal Numbers are 1, 17, 49, 97, 161, 241 … 
 

Examples: 

Input: N = 3 
Output: 67 
Explanation: 
1, 17 and 49 are the first three centered Hexadecagonal numbers.
Input: N = 5 
Output: 325 
 

Approach: 

  1. Initially, we need to create a function which will help us to calculate the Nth Centered Hexadecagonal number.
  2. Now, we run a loop starting from 1 to N, to find ith Centered Hexadecagonal number.
  3. Add all the above calculated Centered Hexadecagonal numbers.
  4. Finally, display the sum of 1st N Centered Hexadecagonal numbers.

Below is the implementation of the above approach: 

C++




// C++ program to find the sum of the first
// N centered hexadecagonal numbers
#include <bits/stdc++.h>
using namespace std;
 
// Centered_Hexadecagonal
// number function
int Centered_Hexadecagonal_num(int n)
{
     
    // Formula to calculate nth
    // Centered_Hexadecagonal
    // number & return it into
    // main function.
    return (8 * n * n - 8 * n + 1);
}
 
// Function to find the sum of the first
// N centered hexadecagonal number
int sum_Centered_Hexadecagonal_num(int n)
{
     
    // Variable to store the sum
    int summ = 0;
     
    // Loop to iterate through the
    // first N numbers
    for(int i = 1; i < n + 1; i++)
    {
         
       // Finding the sum
       summ += Centered_Hexadecagonal_num(i);
    }
    return summ;
}
 
// Driver code
int main()
{
    int n = 5;
     
    // Display first Nth
    // Centered_Hexadecagonal number
    cout << sum_Centered_Hexadecagonal_num(n);
}
 
// This code is contributed by coder001


Java




// Java program to find the sum of the first
// N centered hexadecagonal numbers
 
class GFG{
     
// Centered_Hexadecagonal
// number function
public static int Centered_Hexadecagonal_num(int n)
{
         
    // Formula to calculate nth
    // Centered_Hexadecagonal
    // number & return it into
    // main function.
    return (8 * n * n - 8 * n + 1);
}
     
// Function to find the sum of the first
// N centered hexadecagonal number
public static int sum_Centered_Hexadecagonal_num(int n)
{
         
    // Variable to store the sum
    int summ = 0;
         
    // Loop to iterate through the
    // first N numbers
    for(int i = 1; i < n + 1; i++)
    {
         
       // Finding the sum
       summ += Centered_Hexadecagonal_num(i);
    }
    return summ;
}
 
// Driver Code   
public static void main(String[] args)
{
    int n = 5;
     
    // Display first Nth
    // Centered_Hexadecagonal number
    System.out.println(sum_Centered_Hexadecagonal_num(n));
}
}
 
// This code is contributed by divyeshrabadiya07


Python3




# Python3 program to find the sum of
# the first N centered
# hexadecagonal numbers
 
# Centered_Hexadecagonal
# number function
def Centered_Hexadecagonal_num(n):
    # Formula to calculate 
    # nth Centered_Hexadecagonal
    # number & return it
    # into main function.
    return (8 * n * n -
            8 * n + 1)
     
   
# Function to find the
# sum of the first N
# Centered Hexadecagonal
# number
def sum_Centered_Hexadecagonal_num(n) :
     
    # Variable to store the
    # sum
    summ = 0
     
    # Loop to iterate through the
    # first N numbers
    for i in range(1, n + 1):
 
        # Find the sum
        summ += Centered_Hexadecagonal_num(i)
     
    return summ
   
# Driver Code
if __name__ == '__main__' :
           
    n = 5
     
    # display first Nth
    # Centered_Hexadecagonal number
    print(sum_Centered_Hexadecagonal_num(n))


C#




// C# program to find the sum of the first
// N centered hexadecagonal numbers
using System;
 
class GFG{
     
// Centered_Hexadecagonal
// number function
public static int Centered_Hexadecagonal_num(int n)
{
         
    // Formula to calculate nth
    // Centered_Hexadecagonal
    // number & return it into
    // main function.
    return (8 * n * n - 8 * n + 1);
}
     
// Function to find the sum of the first
// N centered hexadecagonal number
public static int sum_Centered_Hexadecagonal_num(int n)
{
         
    // Variable to store the sum
    int summ = 0;
         
    // Loop to iterate through the
    // first N numbers
    for(int i = 1; i < n + 1; i++)
    {
        
       // Finding the sum
       summ += Centered_Hexadecagonal_num(i);
    }
    return summ;
}
 
// Driver Code
public static void Main()
{
    int n = 5;
     
    // Display first Nth
    // Centered_Hexadecagonal number
    Console.Write(sum_Centered_Hexadecagonal_num(n));
}
}
 
// This code is contributed by Code_Mech


Javascript




<script>
  // Javascript program to find the sum of the first 
  // N centered hexadecagonal numbers
   
  // Centered_Hexadecagonal 
  // number function
  function Centered_Hexadecagonal_num(n) 
  {
 
      // Formula to calculate nth 
      // Centered_Hexadecagonal 
      // number & return it into
      // main function. 
      return (8 * n * n - 8 * n + 1);
  }
 
  // Function to find the sum of the first
  // N centered hexadecagonal number
  function sum_Centered_Hexadecagonal_num(n)
  {
 
      // Variable to store the sum
      let summ = 0;
 
      // Loop to iterate through the
      // first N numbers
      for(let i = 1; i < n + 1; i++)
      {
 
         // Finding the sum
         summ += Centered_Hexadecagonal_num(i);
      }
      return summ;
  }
   
  let n = 5;
       
  // Display first Nth 
  // Centered_Hexadecagonal number
  document.write(sum_Centered_Hexadecagonal_num(n));
   
  // This code is contributed by divyesh072019.
</script>


Output: 

325

 

Time Complexity: O(N)

Auxiliary Space: O(1) as it is using constant space for variables


Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!

Last Updated : 19 Sep, 2022
Like Article
Save Article
Similar Reads
Related Tutorials