Given an array arr[] of positive integers, the task is to find the ratio of LCM and GCD of the given array.
Examples:
Input: arr[] = {2, 3, 5, 9}
Output: 90:1
Explanation:
The GCD of the given array is 1 and the LCM is 90.
Therefore, the ratio is evaluated as 90:1.
Input: arr[] = {6, 12, 36}
Output: 6:1
Explanation:
The GCD of the given array is 6 and the LCM is 36.
Therefore the ratio is evaluated as 6:1.
Approach:
Follow the steps below to solve the problems:
- First of all, we will find the GCD of the given array . For this purpose, we can use the inbuilt function for GCD provided by STL or we can use Euclidean algorithm.
- Then, we will find the LCM of the array by using the below formula:

- At last, we will find the required ratio.
Below is the implementation of the above approach:
C++
#include <bits/stdc++.h>
using namespace std;
int findGCD( int arr[], int n)
{
int gcd = arr[0];
for ( int i = 1; i < n; i++) {
gcd = __gcd(arr[i], gcd);
if (gcd == 1) {
return 1;
}
}
return gcd;
}
int findLCM( int arr[], int n)
{
int lcm = arr[0];
for ( int i = 1; i < n; i++) {
lcm = (((arr[i] * lcm))
/ (__gcd(arr[i], lcm)));
}
return lcm;
}
void findRatio( int arr[], int n)
{
int gcd = findGCD(arr, n);
int lcm = findLCM(arr, n);
cout << lcm / gcd << ":"
<< 1 << endl;
}
int main()
{
int arr[] = { 6, 12, 36 };
int N = sizeof (arr) / sizeof (arr[0]);
findRatio(arr, N);
return 0;
}
|
Java
class GFG{
static int __gcd( int a, int b)
{
if (b == 0 )
return a;
return __gcd(b, a % b);
}
static int findGCD( int arr[], int n)
{
int gcd = arr[ 0 ];
for ( int i = 1 ; i < n; i++)
{
gcd = __gcd(arr[i], gcd);
if (gcd == 1 )
{
return 1 ;
}
}
return gcd;
}
static int findLCM( int arr[], int n)
{
int lcm = arr[ 0 ];
for ( int i = 1 ; i < n; i++)
{
lcm = (((arr[i] * lcm)) /
(__gcd(arr[i], lcm)));
}
return lcm;
}
static void findRatio( int arr[], int n)
{
int gcd = findGCD(arr, n);
int lcm = findLCM(arr, n);
System.out.print((lcm / gcd));
System.out.print( ":1" );
}
public static void main (String[] args)
{
int arr[] = new int []{ 6 , 12 , 36 };
int N = 3 ;
findRatio(arr, N);
}
}
|
Python3
import math
def findGCD(arr, n):
gcd = arr[ 0 ]
for i in range ( 1 , n):
gcd = int (math.gcd(arr[i], gcd))
if (gcd = = 1 ):
return 1
return gcd
def findLCM(arr, n):
lcm = arr[ 0 ]
for i in range ( 1 , n):
lcm = int ((((arr[i] * lcm)) /
(math.gcd(arr[i], lcm))))
return lcm
def findRatio(arr, n):
gcd = findGCD(arr, n)
lcm = findLCM(arr, n)
print ( int (lcm / gcd), ":" , "1" )
arr = [ 6 , 12 , 36 ]
N = len (arr)
findRatio(arr, N)
|
C#
using System;
class GFG{
static int __gcd( int a, int b)
{
if (b == 0)
return a;
return __gcd(b, a % b);
}
static int findGCD( int []arr, int n)
{
int gcd = arr[0];
for ( int i = 1; i < n; i++)
{
gcd = __gcd(arr[i], gcd);
if (gcd == 1)
{
return 1;
}
}
return gcd;
}
static int findLCM( int []arr, int n)
{
int lcm = arr[0];
for ( int i = 1; i < n; i++)
{
lcm = (((arr[i] * lcm)) /
(__gcd(arr[i], lcm)));
}
return lcm;
}
static void findRatio( int []arr, int n)
{
int gcd = findGCD(arr, n);
int lcm = findLCM(arr, n);
Console.Write((lcm / gcd));
Console.Write( ":1" );
}
public static void Main()
{
int []arr = new int []{ 6, 12, 36 };
int N = 3;
findRatio(arr, N);
}
}
|
Javascript
<script>
function __gcd(a , b)
{
if (b == 0)
return a;
return __gcd(b, a % b);
}
function findGCD(arr, n)
{
var gcd = arr[0];
for (i = 1; i < n; i++)
{
gcd = __gcd(arr[i], gcd);
if (gcd == 1) {
return 1;
}
}
return gcd;
}
function findLCM(arr, n)
{
var lcm = arr[0];
for (i = 1; i < n; i++)
{
lcm = (((arr[i] * lcm)) / (__gcd(arr[i], lcm)));
}
return lcm;
}
function findRatio(arr , n) {
var gcd = findGCD(arr, n);
var lcm = findLCM(arr, n);
document.write((lcm / gcd));
document.write( ":1" );
}
var arr = [ 6, 12, 36 ];
var N = 3;
findRatio(arr, N);
</script>
|
Time Complexity: O(N * logN)
Auxiliary Space: O(1)
Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!
Last Updated :
14 Dec, 2021
Like Article
Save Article