# Find the product of sum of two diagonals of a square Matrix

• Difficulty Level : Easy
• Last Updated : 20 Apr, 2021

Given a square matrix mat consisting of integers of size NxN, the task is to calculate the product between the sums of its diagonal.
Examples:

```Input: mat[][] = {{5, 8, 1},
{5, 10, 3},
{-6, 17, -9}}
Output: 30
Sum of primary diagonal = 5 + 10 + (-9) = 6.
Sum of secondary diagonal = 1 + 10 + (-6) = 5.
Product = 6 * 5 = 30.

Input: mat[][] = {{22, -8, 11},
{55, 87, -1},
{-61, 69, 19}}
Output: 4736```

Hey! Looking for some great resources suitable for young ones? You've come to the right place. Check out our self-paced courses designed for students of grades I-XII

Start with topics like Python, HTML, ML, and learn to make some games and apps all with the help of our expertly designed content! So students worry no more, because GeeksforGeeks School is now here!

Naive approach: Traverse the entire matrix and find the diagonal elements. Calculate the sums across the two diagonals of a square matrix. Then, just take the product of the two sums obtained.
Time complexity: O(N2)
Naive approach: Traverse just the diagonal elements instead of the entire matrix by observing the pattern in the indices of the diagonal elements.
Below is the implementation of this approach:

## CPP

 `// C++ program to find the product``// of the sum of diagonals.` `#include ``using` `namespace` `std;` `// Function to find the product``// of the sum of diagonals.``long` `long` `product(vector> &mat, ``int` `n)``{``    ``// Initialize sums of diagonals``    ``long` `long` `d1 = 0, d2 = 0;` `    ``for` `(``int` `i = 0; i < n; i++)``    ``{``        ``d1 += mat[i][i];``        ``d2 += mat[i][n - i - 1];``    ``}``    ` `    ``// Return the answer``    ``return` `1LL * d1 * d2;``}` `// Driven code``int` `main()``{``    ``vector> mat = {{ 5, 8, 1},``                               ``{ 5, 10, 3},``                               ``{ -6, 17, -9}};``                               ` `    ``int` `n = mat.size();``    ` `    ``// Function call``    ``cout << product(mat, n);``    ` `    ``return` `0;``}`

## Java

 `// Java program to find the product``// of the sum of diagonals.`  `class` `GFG{`` ` `// Function to find the product``// of the sum of diagonals.``static` `long` `product(``int` `[][]mat, ``int` `n)``{``    ``// Initialize sums of diagonals``    ``long` `d1 = ``0``, d2 = ``0``;`` ` `    ``for` `(``int` `i = ``0``; i < n; i++)``    ``{``        ``d1 += mat[i][i];``        ``d2 += mat[i][n - i - ``1``];``    ``}``     ` `    ``// Return the answer``    ``return` `1L * d1 * d2;``}`` ` `// Driven code``public` `static` `void` `main(String[] args)``{``    ``int` `[][]mat = {{ ``5``, ``8``, ``1``},``                               ``{ ``5``, ``10``, ``3``},``                               ``{ -``6``, ``17``, -``9``}};``                                ` `    ``int` `n = mat.length;``     ` `    ``// Function call``    ``System.out.print(product(mat, n));``     ` `}``}` `// This code is contributed by 29AjayKumar`

## Python3

 `# Python3 program to find the product``# of the sum of diagonals.` `# Function to find the product``# of the sum of diagonals.``def` `product(mat,n):` `    ``# Initialize sums of diagonals``    ``d1 ``=` `0``    ``d2 ``=` `0` `    ``for` `i ``in` `range``(n):` `        ``d1 ``+``=` `mat[i][i]``        ``d2 ``+``=` `mat[i][n ``-` `i ``-` `1``]` `    ``# Return the answer``    ``return` `d1 ``*` `d2`  `# Driven code``if` `__name__ ``=``=` `'__main__'``:``    ``mat ``=` `[[``5``, ``8``, ``1``],``        ``[``5``, ``10``, ``3``],``        ``[``-``6``, ``17``, ``-``9``]]` `    ``n ``=` `len``(mat)` `    ``# Function call``    ``print``(product(mat, n))``    ` `# This code is contributed by mohit kumar 29   `

## C#

 `// C# program to find the product``// of the sum of diagonals.``using` `System;` `class` `GFG{` `// Function to find the product``// of the sum of diagonals.``static` `long` `product(``int` `[,]mat, ``int` `n)``{``    ``// Initialize sums of diagonals``    ``long` `d1 = 0, d2 = 0;` `    ``for` `(``int` `i = 0; i < n; i++)``    ``{``        ``d1 += mat[i, i];``        ``d2 += mat[i, n - i - 1];``    ``}``    ` `    ``// Return the answer``    ``return` `1L * d1 * d2;``}` `// Driven code``public` `static` `void` `Main(String[] args)``{``    ``int` `[,]mat = {{ 5, 8, 1},``                    ``{ 5, 10, 3},``                    ``{ -6, 17, -9}};``                                ` `    ``int` `n = mat.GetLength(0);``    ` `    ``// Function call``    ``Console.Write(product(mat, n));``}``}` `// This code is contributed by Princi Singh`

## Javascript

 ``
Output:
`30`

Time complexity: O(N)

My Personal Notes arrow_drop_up