Find the maximum elements in the first and the second halves of the Array

Given an array arr[] of N integers. The task is to find the largest elements in the first half and the second half of the array. Note that if the size of the array is odd then the middle element will be included in both the halves.

Examples:

Input: arr[] = {1, 12, 14, 5}
Output: 12, 14
First half is {1, 12} and the second half is {14, 5}.



Input: arr[] = {1, 2, 3, 4, 5}
Output: 3, 5

Approach: Calculate the middle index of the array as mid = N / 2. Now the first halve elements will be present in the subarray arr[0…mid-1] and arr[mid…N-1] if N is even.
If N is odd then the halves are arr[0…mid] and arr[mid…N-1]

Below is the implementation of the above approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
  
// Function to print largest element in
// first half and second half of an array
void findMax(int arr[], int n)
{
  
    // To store the maximum element
    // in the first half
    int maxFirst = INT_MIN;
  
    // Middle index of the array
    int mid = n / 2;
  
    // Calculate the maximum element
    // in the first half
    for (int i = 0; i < mid; i++)
        maxFirst = max(maxFirst, arr[i]);
  
    // If the size of array is odd then
    // the middle element will be included
    // in both the halves
    if (n % 2 == 1)
        maxFirst = max(maxFirst, arr[mid]);
  
    // To store the maximum element
    // in the second half
    int maxSecond = INT_MIN;
  
    // Calculate the maximum element
    // int the second half
    for (int i = mid; i < n; i++)
        maxSecond = max(maxSecond, arr[i]);
  
    // Print the found maximums
    cout << maxFirst << ", " << maxSecond;
}
  
// Driver code
int main()
{
    int arr[] = { 1, 12, 14, 5 };
    int n = sizeof(arr) / sizeof(arr[0]);
  
    findMax(arr, n);
  
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java implementation of the approach
import java.io.*;
  
class GFG
{
    static void findMax(int []arr, int n) 
    
      
        // To store the maximum element 
        // in the first half 
        int maxFirst = Integer.MIN_VALUE; 
      
        // Middle index of the array 
        int mid = n / 2
      
        // Calculate the maximum element 
        // in the first half 
        for (int i = 0; i < mid; i++) 
        {
            maxFirst = Math.max(maxFirst, arr[i]); 
        }
      
        // If the size of array is odd then 
        // the middle element will be included 
        // in both the halves 
        if (n % 2 == 1
        {
            maxFirst = Math.max(maxFirst, arr[mid]); 
        }
          
        // To store the maximum element 
        // in the second half 
        int maxSecond = Integer.MIN_VALUE; 
      
        // Calculate the maximum element 
        // int the second half 
        for (int i = mid; i < n; i++) 
        {
            maxSecond = Math.max(maxSecond, arr[i]); 
        }
          
        // Print the found maximums 
        System.out.print(maxFirst + ", " + maxSecond);
        // cout << maxFirst << ", " << maxSecond; 
    
      
    // Driver Code
    public static void main(String[] args)
    {
        int []arr = { 1, 12, 14, 5 }; 
        int n = arr.length; 
      
        findMax(arr, n); 
    
}
  
// This code is contributed by anuj_67..

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 implementation of the approach
import sys
  
# Function to print largest element in
# first half and second half of an array
def findMax(arr, n) :
  
    # To store the maximum element
    # in the first half
    maxFirst = -sys.maxsize - 1
  
    # Middle index of the array
    mid = n // 2;
  
    # Calculate the maximum element
    # in the first half
    for i in range(0, mid):
        maxFirst = max(maxFirst, arr[i])
  
    # If the size of array is odd then
    # the middle element will be included
    # in both the halves
    if (n % 2 == 1):
        maxFirst = max(maxFirst, arr[mid])
  
    # To store the maximum element
    # in the second half
    maxSecond = -sys.maxsize - 1
  
    # Calculate the maximum element
    # int the second half
    for i in range(mid, n):
        maxSecond = max(maxSecond, arr[i])
  
    # Print the found maximums
    print(maxFirst, ",", maxSecond)
  
# Driver code
arr = [1, 12, 14, 5 ]
n = len(arr)
  
findMax(arr, n)
  
# This code is contributed by ihritik

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# implementation of the approach
using System;
  
class GFG
{
    static void findMax(int []arr, int n) 
    
      
        // To store the maximum element 
        // in the first half 
        int maxFirst = int.MinValue; 
      
        // Middle index of the array 
        int mid = n / 2; 
      
        // Calculate the maximum element 
        // in the first half 
        for (int i = 0; i < mid; i++) 
        {
            maxFirst = Math.Max(maxFirst, arr[i]); 
        }
      
        // If the size of array is odd then 
        // the middle element will be included 
        // in both the halves 
        if (n % 2 == 1) 
        {
            maxFirst = Math.Max(maxFirst, arr[mid]); 
        }
          
        // To store the maximum element 
        // in the second half 
        int maxSecond = int.MinValue; 
      
        // Calculate the maximum element 
        // int the second half 
        for (int i = mid; i < n; i++) 
        {
            maxSecond = Math.Max(maxSecond, arr[i]); 
        }
          
        // Print the found maximums 
        Console.WriteLine(maxFirst + ", " + maxSecond);
        // cout << maxFirst << ", " << maxSecond; 
    
      
    // Driver Code
    public static void Main()
    {
        int []arr = { 1, 12, 14, 5 }; 
        int n = arr.Length; 
      
        findMax(arr, n); 
    
}
  
// This code is contributed by nidhiva

chevron_right


Output:

12, 14


My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Improved By : nidhiva, vt_m, ihritik