Find the final number obtained after performing the given operation

Given an array of positive distinct integers arr[], the task is to find the final number obtained by performing the following operation on the elements of the array:
Operation: Take two unequal numbers and replace the larger number with their difference until all numbers become equal.

Examples:

Input: arr[] = {5, 2, 3}
Output: 1
5 – 3 = 2, arr[] = {2, 2, 3}
3 – 2 = 1, arr[] = {2, 2, 1}
2 – 1 = 1, arr[] = {2, 1, 1}
2 – 1 = 1, arr[] = {1, 1, 1}



Input: arr[] = {3, 9, 6, 36}
Output: 3

Naive approach: Since final answer will always be distinct, one can just sort the array and replace the largest term with the difference of the two largest elements and repeat the process until all the numbers become equal.

Efficient approach: From Euclidean’s algorithm, it is known that gcd(a, b) = gcd(a – b, b). This can be extended to gcd(A1, A2, A3, …, An) = gcd(A1 – A2, A2, A3, …, An).
Also, let’s say that after applying the given operation, the final number obtained be K. Hence, from the extended algorithm, it can be said that gcd(A1, A2, A3, …, An) = gcd(K, K, …, n times). Since gcd(K, K, …, n times) = K, the solution of the given problem can be found
by finding the gcd of all the elements of the array.

Below is the implementation of the above approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
  
// Function to return the final number
// obtained after performing the
// given operation
int finalNum(int arr[], int n)
{
  
    // Find the gcd of the array elements
    int result = 0;
    for (int i = 0; i < n; i++) {
        result = __gcd(result, arr[i]);
    }
    return result;
}
  
// Driver code
int main()
{
    int arr[] = { 3, 9, 6, 36 };
    int n = sizeof(arr) / sizeof(arr[0]);
  
    cout << finalNum(arr, n);
  
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java implementation of the approach
class GFG
{
  
// Function to return the final number
// obtained after performing the
// given operation
static int finalNum(int arr[], int n)
{
  
    // Find the gcd of the array elements
    int result = 0;
    for (int i = 0; i < n; i++) 
    {
        result = __gcd(result, arr[i]);
    }
    return result;
}
  
static int __gcd(int a, int b) 
    return b == 0? a:__gcd(b, a % b);     
  
// Driver code
public static void main(String[] args)
{
    int arr[] = { 3, 9, 6, 36 };
    int n = arr.length;
  
    System.out.print(finalNum(arr, n));
}
}
  
// This code is contributed by 29AjayKumar

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 implementation of the approach
from math import gcd as __gcd
  
# Function to return the final number
# obtained after performing the
# given operation
def finalNum(arr, n):
  
    # Find the gcd of the array elements
    result = arr[0]
    for i in arr:
        result = __gcd(result, i)
    return result
  
# Driver code
arr = [3, 9, 6, 36]
n = len(arr)
  
print(finalNum(arr, n))
  
# This code is contributed by Mohit Kumar

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# implementation of the approach
using System;
  
class GFG
{
  
// Function to return the readonly number
// obtained after performing the
// given operation
static int finalNum(int []arr, int n)
{
  
    // Find the gcd of the array elements
    int result = 0;
    for (int i = 0; i < n; i++) 
    {
        result = __gcd(result, arr[i]);
    }
    return result;
}
  
static int __gcd(int a, int b) 
    return b == 0 ? a : __gcd(b, a % b);     
  
// Driver code
public static void Main(String[] args)
{
    int []arr = { 3, 9, 6, 36 };
    int n = arr.Length;
  
    Console.Write(finalNum(arr, n));
}
}
  
// This code is contributed by 29AjayKumar

chevron_right


Output:

3

competitive-programming-img




My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.