Given an array of positive distinct integers **arr[]**, the task is to find the final number obtained by performing the following operation on the elements of the array: **Operation:** Take two unequal numbers and replace the larger number with their difference until all numbers become equal.**Examples:**

Input:arr[] = {5, 2, 3}Output:1

5 – 3 = 2, arr[] = {2, 2, 3}

3 – 2 = 1, arr[] = {2, 2, 1}

2 – 1 = 1, arr[] = {2, 1, 1}

2 – 1 = 1, arr[] = {1, 1, 1}Input:arr[] = {3, 9, 6, 36}Output:3

**Naive approach:** Since final answer will always be distinct, one can just sort the array and replace the largest term with the difference of the two largest elements and repeat the process until all the numbers become equal.**Efficient approach:** From Euclidean’s algorithm, it is known that **gcd(a, b) = gcd(a – b, b)**. This can be extended to **gcd(A _{1}, A_{2}, A_{3}, …, A_{n}) = gcd(A_{1} – A_{2}, A_{2}, A_{3}, …, A_{n})**.

Also, let’s say that after applying the given operation, the final number obtained be K. Hence, from the extended algorithm, it can be said that

**gcd(A**. Since

_{1}, A_{2}, A_{3}, …, A_{n}) = gcd(K, K, …, n times)**gcd(K, K, …, n times) = K**, the solution of the given problem can be found

by finding the gcd of all the elements of the array.

Below is the implementation of the above approach:

## C++

`// C++ implementation of the approach` `#include <bits/stdc++.h>` `using` `namespace` `std;` `// Function to return the final number` `// obtained after performing the` `// given operation` `int` `finalNum(` `int` `arr[], ` `int` `n)` `{` ` ` `// Find the gcd of the array elements` ` ` `int` `result = 0;` ` ` `for` `(` `int` `i = 0; i < n; i++) {` ` ` `result = __gcd(result, arr[i]);` ` ` `}` ` ` `return` `result;` `}` `// Driver code` `int` `main()` `{` ` ` `int` `arr[] = { 3, 9, 6, 36 };` ` ` `int` `n = ` `sizeof` `(arr) / ` `sizeof` `(arr[0]);` ` ` `cout << finalNum(arr, n);` ` ` `return` `0;` `}` |

## Java

`// Java implementation of the approach` `class` `GFG` `{` `// Function to return the final number` `// obtained after performing the` `// given operation` `static` `int` `finalNum(` `int` `arr[], ` `int` `n)` `{` ` ` `// Find the gcd of the array elements` ` ` `int` `result = ` `0` `;` ` ` `for` `(` `int` `i = ` `0` `; i < n; i++)` ` ` `{` ` ` `result = __gcd(result, arr[i]);` ` ` `}` ` ` `return` `result;` `}` `static` `int` `__gcd(` `int` `a, ` `int` `b)` `{` ` ` `return` `b == ` `0` `? a:__gcd(b, a % b); ` `}` `// Driver code` `public` `static` `void` `main(String[] args)` `{` ` ` `int` `arr[] = { ` `3` `, ` `9` `, ` `6` `, ` `36` `};` ` ` `int` `n = arr.length;` ` ` `System.out.print(finalNum(arr, n));` `}` `}` `// This code is contributed by 29AjayKumar` |

## Python3

`# Python3 implementation of the approach` `from` `math ` `import` `gcd as __gcd` `# Function to return the final number` `# obtained after performing the` `# given operation` `def` `finalNum(arr, n):` ` ` `# Find the gcd of the array elements` ` ` `result ` `=` `arr[` `0` `]` ` ` `for` `i ` `in` `arr:` ` ` `result ` `=` `__gcd(result, i)` ` ` `return` `result` `# Driver code` `arr ` `=` `[` `3` `, ` `9` `, ` `6` `, ` `36` `]` `n ` `=` `len` `(arr)` `print` `(finalNum(arr, n))` `# This code is contributed by Mohit Kumar` |

## C#

`// C# implementation of the approach` `using` `System;` `class` `GFG` `{` `// Function to return the readonly number` `// obtained after performing the` `// given operation` `static` `int` `finalNum(` `int` `[]arr, ` `int` `n)` `{` ` ` `// Find the gcd of the array elements` ` ` `int` `result = 0;` ` ` `for` `(` `int` `i = 0; i < n; i++)` ` ` `{` ` ` `result = __gcd(result, arr[i]);` ` ` `}` ` ` `return` `result;` `}` `static` `int` `__gcd(` `int` `a, ` `int` `b)` `{` ` ` `return` `b == 0 ? a : __gcd(b, a % b); ` `}` `// Driver code` `public` `static` `void` `Main(String[] args)` `{` ` ` `int` `[]arr = { 3, 9, 6, 36 };` ` ` `int` `n = arr.Length;` ` ` `Console.Write(finalNum(arr, n));` `}` `}` `// This code is contributed by 29AjayKumar` |

## Javascript

`<script>` `// javascript implementation of the approach ` `// Function to return the final number` ` ` `// obtained after performing the` ` ` `// given operation` ` ` `function` `finalNum(arr , n) {` ` ` `// Find the gcd of the array elements` ` ` `var` `result = 0;` ` ` `for` `(i = 0; i < n; i++) {` ` ` `result = __gcd(result, arr[i]);` ` ` `}` ` ` `return` `result;` ` ` `}` ` ` `function` `__gcd(a , b) {` ` ` `return` `b == 0 ? a : __gcd(b, a % b);` ` ` `}` ` ` `// Driver code` ` ` ` ` `var` `arr = [ 3, 9, 6, 36 ];` ` ` `var` `n = arr.length;` ` ` `document.write(finalNum(arr, n));` `// This code contributed by aashish1995` `</script>` |

**Output:**

3

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the **DSA Self Paced Course** at a student-friendly price and become industry ready. To complete your preparation from learning a language to DS Algo and many more, please refer **Complete Interview Preparation Course****.**

In case you wish to attend live classes with industry experts, please refer **Geeks Classes Live**