Skip to content
Related Articles

Related Articles

Improve Article
Save Article
Like Article

Sum of the updated array after performing the given operation

  • Last Updated : 08 Mar, 2022

Given an array arr[] of N elements, the task is to update all the array elements such that an element arr[i] is updated as arr[i] = arr[i] – X where X = arr[i + 1] + arr[i + 2] + … + arr[N – 1] and finally print the sum of the updated array.
Examples: 
 

Input: arr[] = {40, 25, 12, 10} 
Output:
The updated array will be {-7, 3, 2, 10}. 
-7 + 3 + 2 + 10 = 8
Input: arr[] = {50, 30, 10, 2, 0} 
Output: 36 
 

 

Approach: A simple solution is for every possible value of i, update arr[i] = arr[i] – sum(arr[i+1…N-1]). 
 

C++




// C++ implementation of the approach
#include <iostream>
using namespace std;
 
// Utility function to return
// the sum of the array
int sumArr(int arr[], int n)
{
    int sum = 0;
    for (int i = 0; i < n; i++)
        sum += arr[i];
    return sum;
}
 
// Function to return the sum
// of the modified array
int sumModArr(int arr[], int n)
{
 
    for (int i = 0; i < n - 1; i++) {
 
        // Find the sum of the subarray
        // arr[i+1...n-1]
        int subSum = 0;
        for (int j = i + 1; j < n; j++) {
            subSum += arr[j];
        }
 
        // Subtract the subarray sum
        arr[i] -= subSum;
    }
 
    // Return the sum of
    // the modified array
    return sumArr(arr, n);
}
 
// Driver code
int main()
{
    int arr[] = { 40, 25, 12, 10 };
    int n = sizeof(arr) / sizeof(arr[0]);
 
    cout << sumModArr(arr, n);
 
    return 0;
}

Java




// Java implementation of the approach
import java.util.*;
 
class GFG
{
 
// Utility function to return
// the sum of the array
static int sumArr(int arr[], int n)
{
    int sum = 0;
    for (int i = 0; i < n; i++)
        sum += arr[i];
    return sum;
}
 
// Function to return the sum
// of the modified array
static int sumModArr(int arr[], int n)
{
    for (int i = 0; i < n - 1; i++)
    {
 
        // Find the sum of the subarray
        // arr[i+1...n-1]
        int subSum = 0;
        for (int j = i + 1; j < n; j++)
        {
            subSum += arr[j];
        }
 
        // Subtract the subarray sum
        arr[i] -= subSum;
    }
 
    // Return the sum of
    // the modified array
    return sumArr(arr, n);
}
 
// Driver code
public static void main(String []args)
{
    int arr[] = { 40, 25, 12, 10 };
    int n = arr.length;
 
    System.out.println(sumModArr(arr, n));
}
}
 
// This code is contributed by Rajput-Ji

Python3




# Python3 implementation of the approach
 
# Utility function to return
# the sum of the array
def sumArr(arr, n):
    sum = 0
    for i in range(n):
        sum += arr[i]
    return sum
 
# Function to return the sum
# of the modified array
def sumModArr(arr, n):
 
    for i in range(n - 1):
 
        # Find the sum of the subarray
        # arr[i+1...n-1]
        subSum = 0
        for j in range(i + 1, n):
            subSum += arr[j]
             
        # Subtract the subarray sum
        arr[i] -= subSum
 
    # Return the sum of
    # the modified array
    return sumArr(arr, n)
 
# Driver code
arr = [40, 25, 12, 10]
n = len(arr)
 
print(sumModArr(arr, n))
 
# This code is contributed by Mohit Kumar

C#




// C# implementation of the approach
using System;
 
class GFG
{
 
    // Utility function to return
    // the sum of the array
    static int sumArr(int []arr, int n)
    {
        int sum = 0;
        for (int i = 0; i < n; i++)
            sum += arr[i];
        return sum;
    }
     
    // Function to return the sum
    // of the modified array
    static int sumModArr(int []arr, int n)
    {
        for (int i = 0; i < n - 1; i++)
        {
     
            // Find the sum of the subarray
            // arr[i+1...n-1]
            int subSum = 0;
            for (int j = i + 1; j < n; j++)
            {
                subSum += arr[j];
            }
     
            // Subtract the subarray sum
            arr[i] -= subSum;
        }
     
        // Return the sum of
        // the modified array
        return sumArr(arr, n);
    }
     
    // Driver code
    public static void Main()
    {
        int []arr = { 40, 25, 12, 10 };
        int n = arr.Length;
     
        Console.WriteLine(sumModArr(arr, n));
    }
}
 
// This code is contributed by AnkitRai01

Javascript




<script>
// javascript implementation of the approach
 
    // Utility function to return
    // the sum of the array
    function sumArr(arr , n) {
        var sum = 0;
        for (i = 0; i < n; i++)
            sum += arr[i];
        return sum;
    }
 
    // Function to return the sum
    // of the modified array
    function sumModArr(arr , n) {
        for (i = 0; i < n - 1; i++) {
 
            // Find the sum of the subarray
            // arr[i+1...n-1]
            var subSum = 0;
            for (j = i + 1; j < n; j++) {
                subSum += arr[j];
            }
 
            // Subtract the subarray sum
            arr[i] -= subSum;
        }
 
        // Return the sum of
        // the modified array
        return sumArr(arr, n);
    }
 
    // Driver code
     
        var arr = [ 40, 25, 12, 10 ];
        var n = arr.length;
 
        document.write(sumModArr(arr, n));
 
// This code is contributed by todaysgaurav
</script>
Output: 
8

 

Time Complexity: O(N2)

Auxiliary Space: O(1)
Efficient approach: An efficient solution is to traverse the array from the end so that the sum of the subarray till now i.e. sum(arr[i+1…n-1]) can be used to calculate the sum of the current subarray arr[i…n-1] i.e. sum(arr[i…n-1]) = arr[i] + sum(arr[i+1…n-1]).
Below is the implementation of the above approach: 
 

C++




// C++ implementation of the approach
#include <iostream>
using namespace std;
 
// Utility function to return
// the sum of the array
int sumArr(int arr[], int n)
{
    int sum = 0;
    for (int i = 0; i < n; i++)
        sum += arr[i];
    return sum;
}
 
// Function to return the sum
// of the modified array
int sumModArr(int arr[], int n)
{
 
    int subSum = arr[n - 1];
    for (int i = n - 2; i >= 0; i--) {
 
        int curr = arr[i];
 
        // Subtract the subarray sum
        arr[i] -= subSum;
 
        // Sum of subarray arr[i...n-1]
        subSum += curr;
    }
 
    // Return the sum of
    // the modified array
    return sumArr(arr, n);
}
 
// Driver code
int main()
{
    int arr[] = { 40, 25, 12, 10 };
    int n = sizeof(arr) / sizeof(arr[0]);
 
    cout << sumModArr(arr, n);
 
    return 0;
}

Java




// Java implementation of the approach
class GFG
{
     
    // Utility function to return
    // the sum of the array
    static int sumArr(int arr[], int n)
    {
        int sum = 0;
        for (int i = 0; i < n; i++)
            sum += arr[i];
        return sum;
    }
     
    // Function to return the sum
    // of the modified array
    static int sumModArr(int arr[], int n)
    {
        int subSum = arr[n - 1];
        for (int i = n - 2; i >= 0; i--)
        {
            int curr = arr[i];
     
            // Subtract the subarray sum
            arr[i] -= subSum;
     
            // Sum of subarray arr[i...n-1]
            subSum += curr;
        }
     
        // Return the sum of
        // the modified array
        return sumArr(arr, n);
    }
     
    // Driver code
    public static void main (String[] args)
    {
        int []arr = { 40, 25, 12, 10 };
        int n = arr.length;
     
        System.out.println(sumModArr(arr, n));
    }
}
 
// This code is contributed by kanugargng

Python3




# Python3 implementation of the approach
 
# Utility function to return
# the sum of the array
def sumArr(arr, n):
 
    sum = 0;
    for i in range(n):
        sum += arr[i];
    return sum;
 
# Function to return the sum
# of the modified array
def sumModArr(arr, n):
 
    subSum = arr[n - 1];
    for i in range(n - 2, -1, -1):
 
        curr = arr[i];
 
        # Subtract the subarray sum
        arr[i] -= subSum;
 
        # Sum of subarray arr[i...n-1]
        subSum += curr;
 
    # Return the sum of
    # the modified array
    return sumArr(arr, n);
 
# Driver code
arr = [40, 25, 12, 10 ];
n = len(arr);
 
print(sumModArr(arr, n));
 
# This code is contributed by 29AjayKumar

C#




// C# implementation of the approach
using System;
     
class GFG
{
     
    // Utility function to return
    // the sum of the array
    static int sumArr(int []arr, int n)
    {
        int sum = 0;
        for (int i = 0; i < n; i++)
            sum += arr[i];
        return sum;
    }
     
    // Function to return the sum
    // of the modified array
    static int sumModArr(int []arr, int n)
    {
        int subSum = arr[n - 1];
        for (int i = n - 2; i >= 0; i--)
        {
            int curr = arr[i];
     
            // Subtract the subarray sum
            arr[i] -= subSum;
     
            // Sum of subarray arr[i...n-1]
            subSum += curr;
        }
     
        // Return the sum of
        // the modified array
        return sumArr(arr, n);
    }
     
    // Driver code
    public static void Main (String[] args)
    {
        int []arr = { 40, 25, 12, 10 };
        int n = arr.Length;
     
        Console.WriteLine(sumModArr(arr, n));
    }
}
 
// This code is contributed by 29AjayKumar

Javascript




<script>
      // JavaScript implementation of the approach
      // Utility function to return
      // the sum of the array
      function sumArr(arr, n) {
        var sum = 0;
        for (var i = 0; i < n; i++) sum += arr[i];
        return sum;
      }
 
      // Function to return the sum
      // of the modified array
 
      function sumModArr(arr, n) {
        var subSum = arr[n - 1];
        for (var i = n - 2; i >= 0; i--) {
          var curr = arr[i];
 
          // Subtract the subarray sum
          arr[i] -= subSum;
 
          // Sum of subarray arr[i...n-1]
          subSum += curr;
        }
 
        // Return the sum of
        // the modified array
        return sumArr(arr, n);
      }
 
      // Driver code
      var arr = [40, 25, 12, 10];
      var n = arr.length;
 
      document.write(sumModArr(arr, n));
       
      // This code is contributed by rdtank.
    </script>
Output: 
8

 

Time Complexity: O(N)

Auxiliary Space: O(N)
 


My Personal Notes arrow_drop_up
Recommended Articles
Page :

Start Your Coding Journey Now!