Skip to content
Related Articles

Related Articles

Improve Article
Find the element having maximum set bits in the given range for Q queries
  • Last Updated : 26 Jan, 2021

Given an array arr[] of N integers and Q queries, each query having two integers L and R, the task is to find the element having maximum set bits in the range L to R. 

Note: If there are multiple elements having maximum set bits, then print the maximum of those.

Examples:  

Input: arr[] = {18, 9, 8, 15, 14, 5}, Q = {{1, 4}} 
Output: 15 
Explanation: 
Subarray – {9, 8, 15, 14} 
Binary Representation of these integers – 
9 => 1001 => Set Bits = 2 
8 => 1000 => Set Bits = 1 
15 => 1111 => Set Bits = 4 
14 => 1110 => Set Bits = 3 
Therefore, element with maximum set bits is 15.

Input: arr[] = {18, 9, 8, 15, 14, 5}, Q = {{0, 2}} 
Output: 18 
Explanation: 
Subarray – {18, 9, 8} 
Binary Representation of these integers – 
18 => 10010 => Set Bits = 2 
9 => 1001 => Set Bits = 2 
8 => 1000 => Set Bits = 1 
Therefore, element with maximum set bits is maximum of 18 and 9, which is 18. 



Naive Approach: A simple solution is to run a loop from L to R and calculate the number of set bits for each element and find the maximum set bits element from L to R for every query.

Time Complexity: O(Q * N) 
Auxiliary Space Complexity: O(1)

Efficient Approach: The idea is to use Segment tree, where each node contains two values, element with maximum set bits and count of maximum set bits. 

  • Representation of Segment trees: 
    1. Leaf Nodes are the elements of the given array.
    2. Each internal node represents some merging of the leaf nodes. The merging may be different for different problems. For this problem, merging is maximum of the max_set_bits of leaves under a node.
    3. An array representation of tree is used to represent Segment Trees. For each node at index i, the left child is at index 2*i+1, right child at 2*i+2 and the parent is at (i-1)/2.
  • Construction of Segment Tree from given array: 
    1. We start with a segment arr[0 . . . n-1]. and every time we divide the current segment into two halves(if it has not yet become a segment of length 1), and then call the same procedure on both halves, and for each such segment, we store the max_set_bits and the value in the corresponding node.
    2. The maximum set bits for any two range combining will either be the maximum set bits from the left side or the maximum set bits from the right side, whichever is maximum will be taken into account.
    3. Finally, compute the range query on the segment tree.

Below is the implementation of the above approach:

C++




// C++ implementation to find
// maximum set bits value in a range
 
#include <bits/stdc++.h>
 
using namespace std;
 
// Structure to store two
// values in one node
struct Node {
    int value;
    int max_set_bits;
};
 
Node tree[4 * 10000];
 
// Function that returns the count
// of set bits in a number
int setBits(int x)
{
    // Parity will store the
    // count of set bits
    int parity = 0;
    while (x != 0) {
        if (x & 1)
            parity++;
        x = x >> 1;
    }
    return parity;
}
 
// Function to build the segment tree
void buildSegmentTree(int a[], int index,
                      int beg, int end)
{
 
    // Condition to check if there is
    // only one element in the array
    if (beg == end) {
        tree[index].value = a[beg];
        tree[index].max_set_bits
            = setBits(a[beg]);
    }
 
    else {
 
        int mid = (beg + end) / 2;
 
        // If there are more than one elements,
        // then recur for left and right subtrees
        buildSegmentTree(a, 2 * index + 1,
                         beg, mid);
        buildSegmentTree(a, 2 * index + 2,
                         mid + 1, end);
 
        // Condition to check the maximum set
        // bits is greater in two subtrees
        if (tree[2 * index + 1].max_set_bits
            > tree[2 * index + 2].max_set_bits) {
 
            tree[index].max_set_bits
                = tree[2 * index + 1]
                      .max_set_bits;
            tree[index].value
                = tree[2 * index + 1]
                      .value;
        }
 
        else if (tree[2 * index + 2].max_set_bits
                 > tree[2 * index + 1].max_set_bits) {
 
            tree[index].max_set_bits
                = tree[2 * index + 2]
                      .max_set_bits;
            tree[index].value
                = tree[2 * index + 2].value;
        }
 
        // Condition when maximum set bits
        // are equal in both subtrees
        else {
            tree[index].max_set_bits
                = tree[2 * index + 2]
                      .max_set_bits;
            tree[index].value = max(
                tree[2 * index + 2].value,
                tree[2 * index + 1].value);
        }
    }
}
 
// Function to do the range query
// in the segment tree
Node query(int index, int beg,
           int end, int l, int r)
{
    Node result;
    result.value
        = result.max_set_bits = -1;
 
    // If segment of this node is outside the given
    // range, then return the minimum value.
    if (beg > r || end < l)
        return result;
 
    // If segment of this node is a part of given
    // range, then return the node of the segment
    if (beg >= l && end <= r)
        return tree[index];
 
    int mid = (beg + end) / 2;
 
    // If left segment of this node falls out of
    // range, then recur in the right side of
    // the tree
    if (l > mid)
        return query(2 * index + 2, mid + 1,
                     end, l, r);
 
    // If right segment of this node falls out of
    // range, then recur in the left side of
    // the tree
    if (r <= mid)
        return query(2 * index + 1, beg,
                     mid, l, r);
 
    // If a part of this segment overlaps with
    // the given range
    Node left = query(2 * index + 1, beg,
                      mid, l, r);
    Node right = query(2 * index + 2, mid + 1,
                       end, l, r);
 
    if (left.max_set_bits > right.max_set_bits) {
        result.max_set_bits = left.max_set_bits;
        result.value = left.value;
    }
    else if (right.max_set_bits > left.max_set_bits) {
        result.max_set_bits = right.max_set_bits;
        result.value = right.value;
    }
    else {
        result.max_set_bits = left.max_set_bits;
        result.value = max(right.value, left.value);
    }
 
    // Returns the value
    return result;
}
 
// Driver code
int main()
{
 
    int a[] = { 18, 9, 8, 15, 14, 5 };
 
    // Calculates the length of array
    int N = sizeof(a) / sizeof(a[0]);
 
    // Build Segment Tree
    buildSegmentTree(a, 0, 0, N - 1);
 
    // Find the max set bits value between
    // 1st and 4th index of array
    cout << query(0, 0, N - 1, 1, 4).value
         << endl;
 
    // Find the max set bits value between
    // 0th and 2nd index of array
    cout << query(0, 0, N - 1, 0, 2).value
         << endl;
 
    return 0;
}

Java




// Java implementation to find
// maximum set bits value in a range
import java.util.*;
 
class GFG{
 
// Structure to store two
// values in one node
static class Node
{
    int value;
    int max_set_bits;
};
 
static Node []tree = new Node[4 * 10000];
 
// Function that returns the count
// of set bits in a number
static int setBits(int x)
{
     
    // Parity will store the
    // count of set bits
    int parity = 0;
    while (x != 0)
    {
        if (x % 2 == 1)
            parity++;
        x = x >> 1;
    }
    return parity;
}
 
// Function to build the segment tree
static void buildSegmentTree(int a[], int index,
                             int beg, int end)
{
     
    // Condition to check if there is
    // only one element in the array
    if (beg == end)
    {
        tree[index].value = a[beg];
        tree[index].max_set_bits = setBits(a[beg]);
    }
    else
    {
        int mid = (beg + end) / 2;
 
        // If there are more than one elements,
        // then recur for left and right subtrees
        buildSegmentTree(a, 2 * index + 1,
                         beg, mid);
        buildSegmentTree(a, 2 * index + 2,
                          mid + 1, end);
 
        // Condition to check the maximum set
        // bits is greater in two subtrees
        if (tree[2 * index + 1].max_set_bits >
            tree[2 * index + 2].max_set_bits)
        {
            tree[index].max_set_bits =
            tree[2 * index + 1].max_set_bits;
            tree[index].value =
            tree[2 * index + 1].value;
        }
        else if (tree[2 * index + 2].max_set_bits >
                 tree[2 * index + 1].max_set_bits)
        {
            tree[index].max_set_bits =
            tree[2 * index + 2].max_set_bits;
            tree[index].value =
            tree[2 * index + 2].value;
        }
 
        // Condition when maximum set bits
        // are equal in both subtrees
        else
        {
            tree[index].max_set_bits =
            tree[2 * index + 2].max_set_bits;
            tree[index].value = Math.max(
            tree[2 * index + 2].value,
            tree[2 * index + 1].value);
        }
    }
}
 
// Function to do the range query
// in the segment tree
static Node query(int index, int beg,
                  int end, int l, int r)
{
    Node result = new Node();
    result.value = result.max_set_bits = -1;
 
    // If segment of this node is outside the given
    // range, then return the minimum value.
    if (beg > r || end < l)
        return result;
 
    // If segment of this node is a part of given
    // range, then return the node of the segment
    if (beg >= l && end <= r)
        return tree[index];
 
    int mid = (beg + end) / 2;
 
    // If left segment of this node falls out of
    // range, then recur in the right side of
    // the tree
    if (l > mid)
        return query(2 * index + 2, mid + 1,
                         end, l, r);
 
    // If right segment of this node falls out of
    // range, then recur in the left side of
    // the tree
    if (r <= mid)
        return query(2 * index + 1, beg,
                     mid, l, r);
 
    // If a part of this segment overlaps with
    // the given range
    Node left = query(2 * index + 1, beg,
                          mid, l, r);
    Node right = query(2 * index + 2, mid + 1,
                           end, l, r);
 
    if (left.max_set_bits > right.max_set_bits)
    {
        result.max_set_bits = left.max_set_bits;
        result.value = left.value;
    }
    else if (right.max_set_bits > left.max_set_bits)
    {
        result.max_set_bits = right.max_set_bits;
        result.value = right.value;
    }
    else
    {
        result.max_set_bits = left.max_set_bits;
        result.value = Math.max(right.value,
                                left.value);
    }
 
    // Returns the value
    return result;
}
 
// Driver code
public static void main(String[] args)
{
 
    int a[] = { 18, 9, 8, 15, 14, 5 };
 
    // Calculates the length of array
    int N = a.length;
     
    for(int i = 0; i < tree.length; i++)
        tree[i] = new Node();
         
    // Build Segment Tree
    buildSegmentTree(a, 0, 0, N - 1);
 
    // Find the max set bits value between
    // 1st and 4th index of array
    System.out.print(query(0, 0, N - 1, 1, 4).value +"\n");
 
    // Find the max set bits value between
    // 0th and 2nd index of array
    System.out.print(query(0, 0, N - 1, 0, 2).value +"\n");
}
}
 
// This code is contributed by amal kumar choubey

Python3




# Python3 implementation to find
# maximum set bits value in a range
 
# Structure to store two
# values in one node
from typing import List
 
class Node:
     
    def __init__(self) -> None:
         
        self.value = 0
        self.max_set_bits = 0
 
tree = [Node() for _ in range(4 * 10000)]
 
# Function that returns the count
# of set bits in a number
def setBits(x: int) -> int:
     
    # Parity will store the
    # count of set bits
    parity = 0
     
    while (x != 0):
        if (x & 1):
            parity += 1
             
        x = x >> 1
 
    return parity
 
# Function to build the segment tree
def buildSegmentTree(a: List[int], index: int,
                     beg: int, end: int) -> None:
 
    # Condition to check if there is
    # only one element in the array
    if (beg == end):
        tree[index].value = a[beg]
        tree[index].max_set_bits = setBits(a[beg])
 
    else:
        mid = (beg + end) // 2
         
        # If there are more than one elements,
        # then recur for left and right subtrees
        buildSegmentTree(a, 2 * index + 1, beg, mid)
        buildSegmentTree(a, 2 * index + 2, mid + 1, end)
 
        # Condition to check the maximum set
        # bits is greater in two subtrees
        if (tree[2 * index + 1].max_set_bits >
            tree[2 * index + 2].max_set_bits):
            tree[index].max_set_bits = tree[2 * index + 1].max_set_bits
            tree[index].value = tree[2 * index + 1].value
 
        elif (tree[2 * index + 2].max_set_bits >
              tree[2 * index + 1].max_set_bits):
 
            tree[index].max_set_bits = tree[2 * index + 2].max_set_bits
            tree[index].value = tree[2 * index + 2].value
 
        # Condition when maximum set bits
        # are equal in both subtrees
        else:
            tree[index].max_set_bits = tree[2 * index + 2].max_set_bits
            tree[index].value = max(tree[2 * index + 2].value,
                                    tree[2 * index + 1].value)
 
# Function to do the range query
# in the segment tree
def query(index: int, beg: int,
          end: int, l: int, r: int) -> Node:
 
    result = Node()
    result.value = result.max_set_bits = -1
 
    # If segment of this node is outside the given
    # range, then return the minimum value.
    if (beg > r or end < l):
        return result
 
    # If segment of this node is a part of given
    # range, then return the node of the segment
    if (beg >= l and end <= r):
        return tree[index]
 
    mid = (beg + end) // 2
 
    # If left segment of this node falls out of
    # range, then recur in the right side of
    # the tree
    if (l > mid):
        return query(2 * index + 2, mid + 1,
                     end, l, r)
 
    # If right segment of this node falls out of
    # range, then recur in the left side of
    # the tree
    if (r <= mid):
        return query(2 * index + 1, beg,
                     mid, l, r)
 
    # If a part of this segment overlaps with
    # the given range
    left = query(2 * index + 1, beg, mid, l, r)
    right = query(2 * index + 2, mid + 1, end, l, r)
 
    if (left.max_set_bits > right.max_set_bits):
        result.max_set_bits = left.max_set_bits
        result.value = left.value
 
    elif (right.max_set_bits > left.max_set_bits):
        result.max_set_bits = right.max_set_bits
        result.value = right.value
 
    else:
        result.max_set_bits = left.max_set_bits
        result.value = max(right.value, left.value)
 
    # Returns the value
    return result
 
# Driver code
if __name__ == "__main__":
 
    a = [ 18, 9, 8, 15, 14, 5 ]
 
    # Calculates the length of array
    N = len(a)
 
    # Build Segment Tree
    buildSegmentTree(a, 0, 0, N - 1)
 
    # Find the max set bits value between
    # 1st and 4th index of array
    print(query(0, 0, N - 1, 1, 4).value)
 
    # Find the max set bits value between
    # 0th and 2nd index of array
    print(query(0, 0, N - 1, 0, 2).value)
 
# This code is contributed by sanjeev2552

C#




// C# implementation to find maximum
// set bits value in a range
using System;
 
class GFG{
 
// Structure to store two
// values in one node
class Node
{
    public int value;
    public int max_set_bits;
};
 
static Node []tree = new Node[4 * 10000];
 
// Function that returns the count
// of set bits in a number
static int setBits(int x)
{
     
    // Parity will store the
    // count of set bits
    int parity = 0;
    while (x != 0)
    {
        if (x % 2 == 1)
            parity++;
        x = x >> 1;
    }
    return parity;
}
 
// Function to build the segment tree
static void buildSegmentTree(int []a, int index,
                             int beg, int end)
{
     
    // Condition to check if there is
    // only one element in the array
    if (beg == end)
    {
        tree[index].value = a[beg];
        tree[index].max_set_bits = setBits(a[beg]);
    }
    else
    {
        int mid = (beg + end) / 2;
 
        // If there are more than one elements,
        // then recur for left and right subtrees
        buildSegmentTree(a, 2 * index + 1,
                         beg, mid);
        buildSegmentTree(a, 2 * index + 2,
                         mid + 1, end);
 
        // Condition to check the maximum set
        // bits is greater in two subtrees
        if (tree[2 * index + 1].max_set_bits >
            tree[2 * index + 2].max_set_bits)
        {
            tree[index].max_set_bits =
            tree[2 * index + 1].max_set_bits;
            tree[index].value =
            tree[2 * index + 1].value;
        }
        else if (tree[2 * index + 2].max_set_bits >
                 tree[2 * index + 1].max_set_bits)
        {
            tree[index].max_set_bits =
            tree[2 * index + 2].max_set_bits;
            tree[index].value =
            tree[2 * index + 2].value;
        }
 
        // Condition when maximum set bits
        // are equal in both subtrees
        else
        {
            tree[index].max_set_bits =
            tree[2 * index + 2].max_set_bits;
            tree[index].value = Math.Max(
            tree[2 * index + 2].value,
            tree[2 * index + 1].value);
        }
    }
}
 
// Function to do the range query
// in the segment tree
static Node query(int index, int beg,
                  int end, int l, int r)
{
    Node result = new Node();
    result.value = result.max_set_bits = -1;
 
    // If segment of this node is outside the given
    // range, then return the minimum value.
    if (beg > r || end < l)
        return result;
 
    // If segment of this node is a part of given
    // range, then return the node of the segment
    if (beg >= l && end <= r)
        return tree[index];
 
    int mid = (beg + end) / 2;
 
    // If left segment of this node falls out of
    // range, then recur in the right side of
    // the tree
    if (l > mid)
        return query(2 * index + 2, mid + 1,
                         end, l, r);
 
    // If right segment of this node falls out of
    // range, then recur in the left side of
    // the tree
    if (r <= mid)
        return query(2 * index + 1, beg,
                         mid, l, r);
 
    // If a part of this segment overlaps with
    // the given range
    Node left = query(2 * index + 1, beg,
                          mid, l, r);
    Node right = query(2 * index + 2, mid + 1,
                           end, l, r);
 
    if (left.max_set_bits > right.max_set_bits)
    {
        result.max_set_bits = left.max_set_bits;
        result.value = left.value;
    }
    else if (right.max_set_bits > left.max_set_bits)
    {
        result.max_set_bits = right.max_set_bits;
        result.value = right.value;
    }
    else
    {
        result.max_set_bits = left.max_set_bits;
        result.value = Math.Max(right.value,
                                 left.value);
    }
 
    // Returns the value
    return result;
}
 
// Driver code
public static void Main(String[] args)
{
 
    int []a = { 18, 9, 8, 15, 14, 5 };
 
    // Calculates the length of array
    int N = a.Length;
     
    for(int i = 0; i < tree.Length; i++)
        tree[i] = new Node();
         
    // Build Segment Tree
    buildSegmentTree(a, 0, 0, N - 1);
 
    // Find the max set bits value between
    // 1st and 4th index of array
    Console.Write(query(0, 0, N - 1, 1, 4).value + "\n");
 
    // Find the max set bits value between
    // 0th and 2nd index of array
    Console.Write(query(0, 0, N - 1, 0, 2).value + "\n");
}
}
 
// This code is contributed by amal kumar choubey
Output: 
15
18

Time Complexity: O(Q * logN)
 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with industry experts, please refer Geeks Classes Live 




My Personal Notes arrow_drop_up
Recommended Articles
Page :