Skip to content
Related Articles

Related Articles

Improve Article
Find the count of palindromic sub-string of a string in its sorted form
  • Difficulty Level : Easy
  • Last Updated : 30 Apr, 2021

Given a string str consisting of lowercase English alphabets, the task is to find the total number of palindromic sub-strings present in the sorted form of str.
Examples: 
 

Input: str = “acbbd” 
Output:
All palindromic sub-string in it’s sorted form (“abbcd”) are “a”, “b”, “b”, “bb”, “c” and “d”.
Input: str = “abbabdbd” 
Output: 16 
 

 

Naive approach: One way is to sort the given string and then count the total number of sub-strings present which are palindromes. For finding number of palindromic sub-strings this approach can be used which has time complexity of O(n^2).
Optimized approach: An efficient way is to count the frequency of each character and then for each frequency total number of palindromes will (n*(n+1))/2 as all the palindromic sub-strings of a sorted string will consist of the same character. 
For example, palindromic sub-string for the string “aabbbcd” will be “a”, “aa”, …, “bbb”, “c”, … etc. Time complexity for this approach will be O(n). 
 

  • Create a hash table for storing the frequencies of each character of the string str.
  • Traverse the hash table and for each non-zero frequency add (hash[i] * (hash[i]+1)) / 2 to the sum.
  • Print the sum in the end.

Below is the implementation of the above approach: 
 



C++




// CPP program to find the count of palindromic sub-string
// of a string in it's ascending form
#include <bits/stdc++.h>
using namespace std;
 
const int MAX_CHAR = 26;
 
// function to return count of palindromic sub-string
int countPalindrome(string str)
{
    int n = str.size();
    int sum = 0;
 
    // calculate frequency
    int hashTable[MAX_CHAR];
    for (int i = 0; i < n; i++)
        hashTable[str[i] - 'a']++;
 
    // calculate count of palindromic sub-string
    for (int i = 0; i < 26; i++) {
        if (hashTable[i])
            sum += (hashTable[i] * (hashTable[i] + 1) / 2);
    }
 
    // return result
    return sum;
}
 
// driver program
int main()
{
    string str = "ananananddd";
 
    cout << countPalindrome(str);
    return 0;
}

Java




// Java program to find the count of palindromic sub-string
// of a string in it's ascending form
 
class GFG {
 
    final static int MAX_CHAR = 26;
 
// function to return count of palindromic sub-string
    static int countPalindrome(String str) {
        int n = str.length();
        int sum = 0;
 
        // calculate frequency
        int hashTable[] = new int[MAX_CHAR];
        for (int i = 0; i < n; i++) {
            hashTable[str.charAt(i) - 'a']++;
        }
 
        // calculate count of palindromic sub-string
        for (int i = 0; i < 26; i++) {
            if (hashTable[i] != 0) {
                sum += (hashTable[i] * (hashTable[i] + 1) / 2);
            }
        }
 
        // return result
        return sum;
    }
 
// driver program
    public static void main(String[] args) {
        String str = "ananananddd";
 
        System.out.println(countPalindrome(str));
 
    }
}

Python3




# Python3 program to find the count of
# palindromic sub-string of a string
# in it's ascending form
MAX_CHAR = 26
 
# function to return count of
# palindromic sub-string
def countPalindrome(str):
 
    n = len (str)
    sum = 0
 
    # calculate frequency
    hashTable = [0] * MAX_CHAR
    for i in range(n):
        hashTable[ord(str[i]) -
                  ord('a')] += 1
 
    # calculate count of palindromic
    # sub-string
    for i in range(26) :
        if (hashTable[i]):
            sum += (hashTable[i] *
                   (hashTable[i] + 1) // 2)
 
    # return result
    return sum
 
# Driver Code
if __name__ == "__main__":
 
    str = "ananananddd"
 
    print (countPalindrome(str))
 
# This code is contributed by ita_c

C#




// C# program to find the count of palindromic sub-string
// of a string in it's ascending form
using System;
                     
public class GFG{
  
    readonly static int MAX_CHAR = 26;
  
// function to return count of palindromic sub-string
    static int countPalindrome(String str) {
        int n = str.Length;
        int sum = 0;
  
        // calculate frequency
        int []hashTable = new int[MAX_CHAR];
        for (int i = 0; i < n; i++) {
            hashTable[str[i] - 'a']++;
        }
  
        // calculate count of palindromic sub-string
        for (int i = 0; i < 26; i++) {
            if (hashTable[i] != 0) {
                sum += (hashTable[i] * (hashTable[i] + 1) / 2);
            }
        }
  
        // return result
        return sum;
    }
  
// driver program
    public static void Main() {
        String str = "ananananddd";
  
        Console.Write(countPalindrome(str));
  
    }
}
 
// This code is contributed by Rajput-Ji

PHP




<?php
// PHP program to find the count of
// palindromic sub-string of a string
// in it's ascending form
$MAX_CHAR = 26;
 
// function to return count of
// palindromic sub-string
function countPalindrome($str)
{
    global $MAX_CHAR;
    $n = strlen($str);
    $sum = 0;
 
    // calculate frequency
    $hashTable = array_fill(0, $MAX_CHAR, 0);
    for ($i = 0; $i < $n; $i++)
        $hashTable[ord($str[$i]) - ord('a')]++;
 
    // calculate count of palindromic sub-string
    for ($i = 0; $i < 26; $i++)
    {
        if ($hashTable[$i])
            $sum += (int)($hashTable[$i] *
                         ($hashTable[$i] + 1) / 2);
    }
 
    // return result
    return $sum;
}
 
// Driver Code
$str = "ananananddd";
 
echo countPalindrome($str);
 
// This code is contributed by mits
?>

Javascript




<script>
 
// Javascript program to find the count of palindromic sub-string
// of a string in it's ascending form
 
var MAX_CHAR = 26;
 
// function to return count of palindromic sub-string
function countPalindrome(str)
{
    var n = str.length;
    var sum = 0;
 
    // calculate frequency
    var hashTable = Array(MAX_CHAR).fill(0);
    for (var i = 0; i < n; i++)
        hashTable[str[i].charCodeAt(0) - 'a'.charCodeAt(0)]++;
 
    // calculate count of palindromic sub-string
    for (var i = 0; i < 26; i++) {
        if (hashTable[i])
            sum += (hashTable[i] * (hashTable[i] + 1) / 2);
    }
 
    // return result
    return sum;
}
 
// driver program
var str = "ananananddd";
document.write( countPalindrome(str));
 
</script>
Output: 
26

 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with industry experts, please refer Geeks Classes Live 




My Personal Notes arrow_drop_up
Recommended Articles
Page :