# Given a string and an integer k, find the kth sub-string when all the sub-strings are sorted according to the given condition

Given a string str, its sub-strings are formed in such a way that all the sub-strings starting with the first character of the string will occur first in the sorted order of their lengths followed by all the sub-strings starting with the second character of the string in the sorted order of their lengths and so on.
For example for the string abc, its sub-strings in the required order are a, ab, abc, b, bc and c.
Now given an integer k, the task is to find the kth sub-string in the required order.

Examples:

Input: str = abc, k = 4
Output: b
The required order is “a”, “ab”, “abc”, “b”, “bc” and “c”

Input: str = abc, k = 9
Output: -1
Only 6 sub-strings are possible.

## Recommended: Please try your approach on {IDE} first, before moving on to the solution.

Approach: The idea is to use binary search. An array substring will be used to store the number of sub-strings starting with ith character + substring[i – 1]. Now using binary search on the array substring, find the starting index of the required sub-string and then find the ending index for the same sub-string with end = length_of_string – (substring[start] – k).

Below is the implementation of the above approach:

## C++

 `// C++ implementation of the approach ` `#include ` `using` `namespace` `std; ` ` `  `// Function to prints kth sub-string ` `void` `Printksubstring(string str, ``int` `n, ``int` `k) ` `{ ` ` `  `    ``// Total sub-strings possible ` `    ``int` `total = (n * (n + 1)) / 2; ` ` `  `    ``// If k is greater than total ` `    ``// number of sub-strings ` `    ``if` `(k > total) { ` `        ``printf``(``"-1\n"``); ` `        ``return``; ` `    ``} ` ` `  `    ``// To store number of sub-strings starting ` `    ``// with ith character of the string ` `    ``int` `substring[n + 1]; ` `    ``substring[0] = 0; ` ` `  `    ``// Compute the values ` `    ``int` `temp = n; ` `    ``for` `(``int` `i = 1; i <= n; i++) { ` ` `  `        ``// substring[i - 1] is added ` `        ``// to store the cumulative sum ` `        ``substring[i] = substring[i - 1] + temp; ` `        ``temp--; ` `    ``} ` ` `  `    ``// Binary search to find the starting index ` `    ``// of the kth sub-string ` `    ``int` `l = 1; ` `    ``int` `h = n; ` `    ``int` `start = 0; ` ` `  `    ``while` `(l <= h) { ` `        ``int` `m = (l + h) / 2; ` ` `  `        ``if` `(substring[m] > k) { ` `            ``start = m; ` `            ``h = m - 1; ` `        ``} ` ` `  `        ``else` `if` `(substring[m] < k) ` `            ``l = m + 1; ` ` `  `        ``else` `{ ` `            ``start = m; ` `            ``break``; ` `        ``} ` `    ``} ` ` `  `    ``// To store the ending index of ` `    ``// the kth sub-string ` `    ``int` `end = n - (substring[start] - k); ` ` `  `    ``// Print the sub-string ` `    ``for` `(``int` `i = start - 1; i < end; i++) ` `        ``cout << str[i]; ` `} ` ` `  `// Driver code ` `int` `main() ` `{ ` `    ``string str = ``"abc"``; ` `    ``int` `k = 4; ` `    ``int` `n = str.length(); ` ` `  `    ``Printksubstring(str, n, k); ` ` `  `    ``return` `0; ` `} `

## Java

 `// Java implementation of the approach ` ` `  `class` `GFG  ` `{ ` ` `  `    ``// Function to prints kth sub-string ` `    ``static` `void` `Printksubstring(String str, ``int` `n, ``int` `k)  ` `    ``{ ` ` `  `        ``// Total sub-strings possible ` `        ``int` `total = (n * (n + ``1``)) / ``2``; ` ` `  `        ``// If k is greater than total ` `        ``// number of sub-strings ` `        ``if` `(k > total) ` `        ``{ ` `            ``System.out.printf(``"-1\n"``); ` `            ``return``; ` `        ``} ` ` `  `        ``// To store number of sub-strings starting ` `        ``// with ith character of the string ` `        ``int` `substring[] = ``new` `int``[n + ``1``]; ` `        ``substring[``0``] = ``0``; ` ` `  `        ``// Compute the values ` `        ``int` `temp = n; ` `        ``for` `(``int` `i = ``1``; i <= n; i++) ` `        ``{ ` ` `  `            ``// substring[i - 1] is added ` `            ``// to store the cumulative sum ` `            ``substring[i] = substring[i - ``1``] + temp; ` `            ``temp--; ` `        ``} ` ` `  `        ``// Binary search to find the starting index ` `        ``// of the kth sub-string ` `        ``int` `l = ``1``; ` `        ``int` `h = n; ` `        ``int` `start = ``0``; ` ` `  `        ``while` `(l <= h)  ` `        ``{ ` `            ``int` `m = (l + h) / ``2``; ` ` `  `            ``if` `(substring[m] > k) ` `            ``{ ` `                ``start = m; ` `                ``h = m - ``1``; ` `            ``}  ` `            ``else` `if` `(substring[m] < k)  ` `            ``{ ` `                ``l = m + ``1``; ` `            ``}  ` `            ``else` `            ``{ ` `                ``start = m; ` `                ``break``; ` `            ``} ` `        ``} ` ` `  `        ``// To store the ending index of ` `        ``// the kth sub-string ` `        ``int` `end = n - (substring[start] - k); ` ` `  `        ``// Print the sub-string ` `        ``for` `(``int` `i = start - ``1``; i < end; i++) ` `        ``{ ` `            ``System.out.print(str.charAt(i)); ` `        ``} ` `    ``} ` ` `  `    ``// Driver code ` `    ``public` `static` `void` `main(String[] args) ` `    ``{ ` ` `  `        ``String str = ``"abc"``; ` `        ``int` `k = ``4``; ` `        ``int` `n = str.length(); ` ` `  `        ``Printksubstring(str, n, k); ` `    ``} ` `} ` ` `  `// This code has been contributed by 29AjayKumar `

## Python3

 `# Python3 implementation of the approach ` ` `  `# Function to prints kth sub-string ` `def` `Printksubstring(str1, n, k): ` `     `  `    ``# Total sub-strings possible ` `    ``total ``=` `int``((n ``*` `(n ``+` `1``)) ``/` `2``) ` ` `  `    ``# If k is greater than total ` `    ``# number of sub-strings ` `    ``if` `(k > total): ` `        ``print``(``"-1"``) ` `        ``return` ` `  `    ``# To store number of sub-strings starting ` `    ``# with ith character of the string ` `    ``substring ``=` `[``0` `for` `i ``in` `range``(n ``+` `1``)] ` `    ``substring[``0``] ``=` `0` ` `  `    ``# Compute the values ` `    ``temp ``=` `n ` `    ``for` `i ``in` `range``(``1``, n ``+` `1``, ``1``): ` `         `  `        ``# substring[i - 1] is added ` `        ``# to store the cumulative sum ` `        ``substring[i] ``=` `substring[i ``-` `1``] ``+` `temp ` `        ``temp ``-``=` `1` ` `  `    ``# Binary search to find the starting index ` `    ``# of the kth sub-string ` `    ``l ``=` `1` `    ``h ``=` `n ` `    ``start ``=` `0` ` `  `    ``while` `(l <``=` `h): ` `        ``m ``=` `int``((l ``+` `h) ``/` `2``) ` ` `  `        ``if` `(substring[m] > k): ` `            ``start ``=` `m ` `            ``h ``=` `m ``-` `1` ` `  `        ``elif` `(substring[m] < k): ` `            ``l ``=` `m ``+` `1` ` `  `        ``else``: ` `            ``start ``=` `m ` `            ``break` ` `  `    ``# To store the ending index of ` `    ``# the kth sub-string ` `    ``end ``=` `n ``-` `(substring[start] ``-` `k) ` ` `  `    ``# Print the sub-string ` `    ``for` `i ``in` `range``(start ``-` `1``, end): ` `        ``print``(str1[i], end ``=` `"") ` ` `  `# Driver code ` `if` `__name__ ``=``=` `'__main__'``: ` `    ``str1 ``=` `"abc"` `    ``k ``=` `4` `    ``n ``=` `len``(str1) ` ` `  `    ``Printksubstring(str1, n, k) ` `     `  `# This code is contributed by ` `# Surendra_Gangwar `

## C#

 `// C# implementation of the approach ` `using` `System; ` ` `  `class` `GFG  ` `{  ` ` `  `    ``// Function to prints kth sub-string  ` `    ``static` `void` `Printksubstring(String str, ``int` `n, ``int` `k)  ` `    ``{  ` ` `  `        ``// Total sub-strings possible  ` `        ``int` `total = (n * (n + 1)) / 2;  ` ` `  `        ``// If k is greater than total  ` `        ``// number of sub-strings  ` `        ``if` `(k > total)  ` `        ``{  ` `            ``Console.Write(``"-1\n"``);  ` `            ``return``;  ` `        ``}  ` ` `  `        ``// To store number of sub-strings starting  ` `        ``// with ith character of the string  ` `        ``int` `[]substring = ``new` `int``[n + 1];  ` `        ``substring[0] = 0;  ` ` `  `        ``// Compute the values  ` `        ``int` `temp = n;  ` `        ``for` `(``int` `i = 1; i <= n; i++)  ` `        ``{  ` ` `  `            ``// substring[i - 1] is added  ` `            ``// to store the cumulative sum  ` `            ``substring[i] = substring[i - 1] + temp;  ` `            ``temp--;  ` `        ``}  ` ` `  `        ``// Binary search to find the starting index  ` `        ``// of the kth sub-string  ` `        ``int` `l = 1;  ` `        ``int` `h = n;  ` `        ``int` `start = 0;  ` ` `  `        ``while` `(l <= h)  ` `        ``{  ` `            ``int` `m = (l + h) / 2;  ` ` `  `            ``if` `(substring[m] > k)  ` `            ``{  ` `                ``start = m;  ` `                ``h = m - 1;  ` `            ``}  ` `            ``else` `if` `(substring[m] < k)  ` `            ``{  ` `                ``l = m + 1;  ` `            ``}  ` `            ``else` `            ``{  ` `                ``start = m;  ` `                ``break``;  ` `            ``}  ` `        ``}  ` ` `  `        ``// To store the ending index of  ` `        ``// the kth sub-string  ` `        ``int` `end = n - (substring[start] - k);  ` ` `  `        ``// Print the sub-string  ` `        ``for` `(``int` `i = start - 1; i < end; i++)  ` `        ``{  ` `            ``Console.Write(str[i]);  ` `        ``}  ` `    ``}  ` ` `  `    ``// Driver code  ` `    ``public` `static` `void` `Main(String[] args)  ` `    ``{  ` ` `  `        ``String str = ``"abc"``;  ` `        ``int` `k = 4;  ` `        ``int` `n = str.Length;  ` ` `  `        ``Printksubstring(str, n, k);  ` `    ``}  ` `}  ` ` `  `// This code contributed by Rajput-Ji `

## PHP

 ` ``\$total``) ` `    ``{  ` `        ``printf(``"-1\n"``);  ` `        ``return``;  ` `    ``}  ` ` `  `    ``// To store number of sub-strings starting  ` `    ``// with ith character of the string  ` `    ``\$substring` `= ``array``();  ` `    ``\$substring``[0] = 0;  ` ` `  `    ``// Compute the values  ` `    ``\$temp` `= ``\$n``;  ` `    ``for` `(``\$i` `= 1; ``\$i` `<= ``\$n``; ``\$i``++) ` `    ``{  ` ` `  `        ``// substring[i - 1] is added  ` `        ``// to store the cumulative sum  ` `        ``\$substring``[``\$i``] = ``\$substring``[``\$i` `- 1] + ``\$temp``;  ` `        ``\$temp``--;  ` `    ``}  ` ` `  `    ``// Binary search to find the starting index  ` `    ``// of the kth sub-string  ` `    ``\$l` `= 1;  ` `    ``\$h` `= ``\$n``;  ` `    ``\$start` `= 0;  ` ` `  `    ``while` `(``\$l` `<= ``\$h``) ` `    ``{  ` `        ``\$m` `= ``floor``((``\$l` `+ ``\$h``) / 2);  ` ` `  `        ``if` `(``\$substring``[``\$m``] > ``\$k``) ` `        ``{  ` `            ``\$start` `= ``\$m``;  ` `            ``\$h` `= ``\$m` `- 1;  ` `        ``}  ` ` `  `        ``else` `if` `(``\$substring``[``\$m``] < ``\$k``)  ` `            ``\$l` `= ``\$m` `+ 1;  ` ` `  `        ``else` `        ``{  ` `            ``\$start` `= ``\$m``;  ` `            ``break``;  ` `        ``}  ` `    ``}  ` ` `  `    ``// To store the ending index of  ` `    ``// the kth sub-string  ` `    ``\$end` `= ``\$n` `- (``\$substring``[``\$start``] - ``\$k``);  ` ` `  `    ``// Print the sub-string  ` `    ``for` `(``\$i` `= ``\$start` `- 1; ``\$i` `< ``\$end``; ``\$i``++)  ` `        ``print``(``\$str``[``\$i``]);  ` `} ` ` `  `// Driver code  ` `\$str` `= ``"abc"``;  ` `\$k` `= 4;  ` `\$n` `= ``strlen``(``\$str``); ` ` `  `Printksubstring(``\$str``, ``\$n``, ``\$k``);  ` ` `  `// This code is contributed by Ryuga ` `?> `

Output:

```b
```

My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.