Find the array element having equal sum of Prime Numbers on its left and right
Given an array arr[] of size N, the task is to find the index in the given array where the sum of the prime numbers present to its left is equal to the sum of the prime numbers present to its right.
Examples:
Input: arr[] = {11, 4, 7, 6, 13, 1, 5}
Output: 3
Explanation: Sum of prime numbers to left of index 3 = 11 + 7 = 18
Sum of prime numbers to right of index 3 = 13 + 5 = 18Input: arr[] = {5, 2, 1, 7}
Output: 2
Explanation: Sum of prime numbers to left of index 2 = 5 + 2 = 7
Sum of prime numbers to right of index 2 = 7
Naive Approach: The simplest approach is to traverse the array and check for the given condition for every index in the range [0, N – 1]. If the condition is found to be true for any index, then print the value of that index.
Time Complexity: O(N2*√M), where M is the largest element in the array
Auxiliary Space: O(1)
Efficient Approach: The above approach can also be optimized using the Sieve of Eratosthenes and prefix sum technique to pre-store the sum of prime numbers left and right to an array element. Follow the steps below to solve the problem:
- Traverse through the array to find the maximum value present in the array.
- Use Sieve of Eratosthenes to find out the prime numbers which are less than or equal to the maximum value present in the array. Store these elements in a Map.
- Initialize an array, say first_array. Traverse the array and store the sum of all prime numbers up to ith index at first_array[i].
- Initialize an array, say second_array. Traverse the array in reverse and store the sum of all elements up to ith index at second_array[i].
- Traverse the arrays first_array and second_array and check if at any index, both their values are equal or not. If found to be true, return that index.
Below is the implementation of the above approach:
C++
// C++ program for the above approach #include <bits/stdc++.h> using namespace std; // Function to find an index in the // array having sum of prime numbers // to its left and right equal int find_index( int arr[], int N) { // Stores the maximum value // present in the array int max_value = INT_MIN; for ( int i = 0; i < N; i++) { max_value = max(max_value, arr[i]); } // Stores all positive // elements which are <= max_value map< int , int > store; for ( int i = 1; i <= max_value; i++) { store[i]++; } // If 1 is present if (store.find(1) != store.end()) { // Remove 1 store.erase(1); } // Sieve of Eratosthenes to // store all prime numbers which // are <= max_value in the Map for ( int i = 2; i <= sqrt (max_value); i++) { int multiple = 2; // Erase non-prime numbers while ((i * multiple) <= max_value) { if (store.find(i * multiple) != store.end()) { store.erase(i * multiple); } multiple++; } } // Stores the sum of // prime numbers from left int prime_sum_from_left = 0; // Stores the sum of prime numbers // to the left of each index int first_array[N]; for ( int i = 0; i < N; i++) { // Stores the sum of prime numbers // to the left of the current index first_array[i] = prime_sum_from_left; if (store.find(arr[i]) != store.end()) { // Add current value to // the prime sum if the // current value is prime prime_sum_from_left += arr[i]; } } // Stores the sum of // prime numbers from right int prime_sum_from_right = 0; // Stores the sum of prime numbers // to the right of each index int second_array[N]; for ( int i = N - 1; i >= 0; i--) { // Stores the sum of prime // numbers to the right of // the current index second_array[i] = prime_sum_from_right; if (store.find(arr[i]) != store.end()) { // Add current value to the // prime sum if the // current value is prime prime_sum_from_right += arr[i]; } } // Traverse through the two // arrays to find the index for ( int i = 0; i < N; i++) { // Compare the values present // at the current index if (first_array[i] == second_array[i]) { // Return the index where // both the values are same return i; } } // No index is found. return -1; } // Driver Code int main() { // Given array arr[] int arr[] = { 11, 4, 7, 6, 13, 1, 5 }; // Size of Array int N = sizeof (arr) / sizeof (arr[0]); // Function Call cout << find_index(arr, N); return 0; } |
Java
// Java program for the above approach import java.lang.*; import java.util.*; class GFG{ // Function to find an index in the // array having sum of prime numbers // to its left and right equal static int find_index( int arr[], int N) { // Stores the maximum value // present in the array int max_value = Integer.MIN_VALUE; for ( int i = 0 ; i < N; i++) { max_value = Math.max(max_value, arr[i]); } // Stores all positive // elements which are <= max_value Map<Integer, Integer> store= new HashMap<>(); for ( int i = 1 ; i <= max_value; i++) { store.put(i, store.getOrDefault(i, 0 ) + 1 ); } // If 1 is present if (store.containsKey( 1 )) { // Remove 1 store.remove( 1 ); } // Sieve of Eratosthenes to // store all prime numbers which // are <= max_value in the Map for ( int i = 2 ; i <= Math.sqrt(max_value); i++) { int multiple = 2 ; // Erase non-prime numbers while ((i * multiple) <= max_value) { if (store.containsKey(i * multiple)) { store.remove(i * multiple); } multiple++; } } // Stores the sum of // prime numbers from left int prime_sum_from_left = 0 ; // Stores the sum of prime numbers // to the left of each index int [] first_array = new int [N]; for ( int i = 0 ; i < N; i++) { // Stores the sum of prime numbers // to the left of the current index first_array[i] = prime_sum_from_left; if (store.containsKey(arr[i])) { // Add current value to // the prime sum if the // current value is prime prime_sum_from_left += arr[i]; } } // Stores the sum of // prime numbers from right int prime_sum_from_right = 0 ; // Stores the sum of prime numbers // to the right of each index int [] second_array= new int [N]; for ( int i = N - 1 ; i >= 0 ; i--) { // Stores the sum of prime // numbers to the right of // the current index second_array[i] = prime_sum_from_right; if (store.containsKey(arr[i])) { // Add current value to the // prime sum if the // current value is prime prime_sum_from_right += arr[i]; } } // Traverse through the two // arrays to find the index for ( int i = 0 ; i < N; i++) { // Compare the values present // at the current index if (first_array[i] == second_array[i]) { // Return the index where // both the values are same return i; } } // No index is found. return - 1 ; } // Driver code public static void main(String[] args) { // Given array arr[] int arr[] = { 11 , 4 , 7 , 6 , 13 , 1 , 5 }; // Size of Array int N = arr.length; // Function Call System.out.println(find_index(arr, N)); } } // This code is contributed by offbeat |
Python3
# Python3 program for the above approach from math import sqrt # Function to find an index in the # array having sum of prime numbers # to its left and right equal def find_index(arr, N): # Stores the maximum value # present in the array max_value = - 10 * * 9 for i in range (N): max_value = max (max_value, arr[i]) # Stores all positive # elements which are <= max_value store = {} for i in range ( 1 , max_value + 1 ): store[i] = store.get(i, 0 ) + 1 # If 1 is present if ( 1 in store): # Remove 1 del store[ 1 ] # Sieve of Eratosthenes to # store all prime numbers which # are <= max_value in the Map for i in range ( 2 , int (sqrt(max_value)) + 1 ): multiple = 2 # Erase non-prime numbers while ((i * multiple) < = max_value): if (i * multiple in store): del store[i * multiple] multiple + = 1 # Stores the sum of # prime numbers from left prime_sum_from_left = 0 # Stores the sum of prime numbers # to the left of each index first_array = [ 0 ] * N for i in range (N): # Stores the sum of prime numbers # to the left of the current index first_array[i] = prime_sum_from_left if arr[i] in store: # Add current value to # the prime sum if the # current value is prime prime_sum_from_left + = arr[i] # Stores the sum of # prime numbers from right prime_sum_from_right = 0 # Stores the sum of prime numbers # to the right of each index second_array = [ 0 ] * N for i in range (N - 1 , - 1 , - 1 ): # Stores the sum of prime # numbers to the right of # the current index second_array[i] = prime_sum_from_right if (arr[i] in store): # Add current value to the # prime sum if the # current value is prime prime_sum_from_right + = arr[i] # Traverse through the two # arrays to find the index for i in range (N): # Compare the values present # at the current index if (first_array[i] = = second_array[i]): # Return the index where # both the values are same return i # No index is found. return - 1 # Driver Code if __name__ = = '__main__' : # Given array arr[] arr = [ 11 , 4 , 7 , 6 , 13 , 1 , 5 ] # Size of Array N = len (arr) # Function Call print (find_index(arr, N)) # This code is contributed by mohit kumar 29. |
C#
// C# program for the above approach using System; using System.Collections.Generic; class GFG{ // Function to find an index in the // array having sum of prime numbers // to its left and right equal static int find_index( int [] arr, int N) { // Stores the maximum value // present in the array int max_value = Int32.MinValue; for ( int i = 0; i < N; i++) { max_value = Math.Max(max_value, arr[i]); } // Stores all positive // elements which are <= max_value Dictionary< int , int > store = new Dictionary< int , int >(); for ( int i = 1; i <= max_value; i++) { if (!store.ContainsKey(i)) store[i] = 0; store[i]++; } // If 1 is present if (store.ContainsKey(1)) { // Remove 1 store.Remove(1); } // Sieve of Eratosthenes to // store all prime numbers which // are <= max_value in the Map for ( int i = 2; i <= Math.Sqrt(max_value); i++) { int multiple = 2; // Erase non-prime numbers while ((i * multiple) <= max_value) { if (store.ContainsKey(i * multiple)) { store.Remove(i * multiple); } multiple++; } } // Stores the sum of // prime numbers from left int prime_sum_from_left = 0; // Stores the sum of prime numbers // to the left of each index int [] first_array = new int [N]; for ( int i = 0; i < N; i++) { // Stores the sum of prime numbers // to the left of the current index first_array[i] = prime_sum_from_left; if (store.ContainsKey(arr[i])) { // Add current value to // the prime sum if the // current value is prime prime_sum_from_left += arr[i]; } } // Stores the sum of // prime numbers from right int prime_sum_from_right = 0; // Stores the sum of prime numbers // to the right of each index int [] second_array = new int [N]; for ( int i = N - 1; i >= 0; i--) { // Stores the sum of prime // numbers to the right of // the current index second_array[i] = prime_sum_from_right; if (store.ContainsKey(arr[i])) { // Add current value to the // prime sum if the // current value is prime prime_sum_from_right += arr[i]; } } // Traverse through the two // arrays to find the index for ( int i = 0; i < N; i++) { // Compare the values present // at the current index if (first_array[i] == second_array[i]) { // Return the index where // both the values are same return i; } } // No index is found. return -1; } // Driver Code public static void Main() { // Given array arr[] int [] arr = { 11, 4, 7, 6, 13, 1, 5 }; // Size of Array int N = arr.Length; // Function Call Console.WriteLine(find_index(arr, N)); } } // This code is contributed by ukasp |
Javascript
<script> // Javascript program for the above approach // Function to find an index in the // array having sum of prime numbers // to its left and right equal function find_index(arr,N) { // Stores the maximum value // present in the array let max_value = Number.MIN_VALUE; for (let i = 0; i < N; i++) { max_value = Math.max(max_value, arr[i]); } // Stores all positive // elements which are <= max_value let store= new Map(); for (let i = 1; i <= max_value; i++) { if (!store.has(i)) store.set(i,0); store.set(i,store.get(i)+1); } // If 1 is present if (store.has(1)) { // Remove 1 store. delete (1); } // Sieve of Eratosthenes to // store all prime numbers which // are <= max_value in the Map for (let i = 2; i <= Math.sqrt(max_value); i++) { let multiple = 2; // Erase non-prime numbers while ((i * multiple) <= max_value) { if (store.has(i * multiple)) { store. delete (i * multiple); } multiple++; } } // Stores the sum of // prime numbers from left let prime_sum_from_left = 0; // Stores the sum of prime numbers // to the left of each index let first_array= new Array(N); for (let i = 0; i < N; i++) { // Stores the sum of prime numbers // to the left of the current index first_array[i] = prime_sum_from_left; if (store.has(arr[i])) { // Add current value to // the prime sum if the // current value is prime prime_sum_from_left += arr[i]; } } // Stores the sum of // prime numbers from right let prime_sum_from_right = 0; // Stores the sum of prime numbers // to the right of each index let second_array= new Array(N); for (let i = N - 1; i >= 0; i--) { // Stores the sum of prime // numbers to the right of // the current index second_array[i] = prime_sum_from_right; if (store.has(arr[i]) ) { // Add current value to the // prime sum if the // current value is prime prime_sum_from_right += arr[i]; } } // Traverse through the two // arrays to find the index for (let i = 0; i < N; i++) { // Compare the values present // at the current index if (first_array[i] == second_array[i]) { // Return the index where // both the values are same return i; } } // No index is found. return -1; } // Driver Code // Given array arr[] let arr=[11, 4, 7, 6, 13, 1, 5]; // Size of Array let N=arr.length; // Function Call document.write(find_index(arr, N)); // This code is contributed by patel2127 </script> |
3
Time Complexity: O(N + max(arr[])loglog(max(arr[]))
Auxiliary Space: O(max(arr[]) + N)
Please Login to comment...