Skip to content
Related Articles

Related Articles

Find relative rank of each element in array
  • Last Updated : 21 Aug, 2020

Given an array A[] of N integers, the task is to find the relative rank for each element in the given array.

The relative rank for each element in the array is the count of elements which is greater than the current element in the Longest Increasing Subsequence from the current element.

Examples:

Input: A[] = {8, 16, 5, 6, 9}, N = 5
Output: {1, 0, 2, 1, 0}
Explanation:
For i = 0, required sequence is {8, 16} Relative Rank = 1.
For i = 1, Since all elements after 16 are smaller than 16, Relative Rank = 0.
For i = 2, required sequence is {5, 6, 9} Relative Rank = 2
For i = 3, required sequence is {6, 9} Relative Rank = 1
For i = 4, required sequence is {9} Relative Rank = 0

Input: A[] = {1, 2, 3, 5, 4}
Output: {3, 2, 1, 0, 0}
Explanation:
For i = 0, required sequence is {1, 2, 3, 5}, Relative Rank = 3
For i = 1, required sequence is {2, 3, 5}, Relative Rank = 2
For i = 2, required sequence is {3, 5}, Relative Rank = 1
For i = 3, required sequence is {5}, Relative Rank = 0
For i = 4, required sequence is {4}, Relative Rank = 0



Naive Approach: The idea is to generate the longest increasing subsequence for each element and then, the relative rank for each element is the (length of LIS – 1).

Time Complexity: O(N2)
Auxiliary Space: O(1)

Efficient Approach: To optimize the above approach, the idea is to use a Stack and store the elements which in non-decreasing order from the right till each element(say A[i]) then the rank for each A[i] is the (size of stack – 1) till that element. Below is the illustration of the same:

Below is the implementation of the above approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
  
// Function to find relative rank for
// each element in the array A[]
void findRank(int A[], int N)
{
    // Create Rank Array
    int rank[N] = {};
  
    // Stack to store numbers in
    // non-decreasing order from right
    stack<int> s;
  
    // Push last element in stack
    s.push(A[N - 1]);
  
    // Iterate from second last
    // element to first element
    for (int i = N - 2; i >= 0; i--) {
  
        // If current element is less
        // than the top of stack and
        // push A[i] in stack
        if (A[i] < s.top()) {
  
            s.push(A[i]);
  
            // Rank is stack size - 1
            // for current element
            rank[i] = s.size() - 1;
        }
        else {
  
            // Pop elements from stack
            // till current element is
            // greater than the top
            while (!s.empty()
                   && A[i] >= s.top()) {
                s.pop();
            }
  
            // Push current element in Stack
            s.push(A[i]);
  
            // Rank is stack size - 1
            rank[i] = s.size() - 1;
        }
    }
  
    // Print rank of all elements
    for (int i = 0; i < N; i++) {
        cout << rank[i] << " ";
    }
}
  
// Driver Code
int main()
{
    // Given array A[]
    int A[] = { 1, 2, 3, 5, 4 };
  
    int N = sizeof(A) / sizeof(A[0]);
  
    // Function call
    findRank(A, N);
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program to implement
// the above approach
import java.io.*;
import java.util.*;
import java.lang.*;
  
class GFG{
      
// Function to find relative rank for
// each element in the array A[]
static void findRank(int[] A, int N)
{
      
    // Create Rank Array
    int[] rank = new int[N];
  
    // Stack to store numbers in
    // non-decreasing order from right
    Stack<Integer> s = new Stack<Integer>();
  
    // Push last element in stack
    s.add(A[N - 1]);
  
    // Iterate from second last
    // element to first element
    for(int i = N - 2; i >= 0; i--)
    {
          
        // If current element is less
        // than the top of stack and
        // push A[i] in stack
        if (A[i] < s.peek()) 
        {
            s.add(A[i]);
  
            // Rank is stack size - 1
            // for current element
            rank[i] = s.size() - 1;
        }
        else
        {
  
            // Pop elements from stack
            // till current element is
            // greater than the top
            while (!s.isEmpty() && 
                    A[i] >= s.peek())
            {
                s.pop();
            }
  
            // Push current element in Stack
            s.add(A[i]);
  
            // Rank is stack size - 1
            rank[i] = s.size() - 1;
        }
    }
  
    // Print rank of all elements
    for(int i = 0; i < N; i++) 
    {
        System.out.print(rank[i] + " ");
    }
}
  
// Driver Code
public static void main(String[] args)
{
      
    // Given array A[]
    int A[] = { 1, 2, 3, 5, 4 };
  
    int N = A.length;
  
    // Function call
    findRank(A, N);
}
}
  
// This code is contributed by sanjoy_62

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 program for the above approach
  
# Function to find relative rank for
# each element in the array A[]
def findRank(A, N):
      
    # Create Rank Array
    rank = [0] * N
  
    # Stack to store numbers in
    # non-decreasing order from right
    s = []
  
    # Push last element in stack
    s.append(A[N - 1])
  
    # Iterate from second last
    # element to first element
    for i in range(N - 2, -1, -1):
  
        # If current element is less
        # than the top of stack and
        # append A[i] in stack
        if (A[i] < s[-1]):
            s.append(A[i])
  
            # Rank is stack size - 1
            # for current element
            rank[i] = len(s) - 1
  
        else:
  
            # Pop elements from stack
            # till current element is
            # greater than the top
            while (len(s) > 0 and A[i] >= s[-1]):
                del s[-1]
  
            # Push current element in Stack
            s.append(A[i])
  
            # Rank is stack size - 1
            rank[i] = len(s) - 1
  
    # Print rank of all elements
    for i in range(N):
        print(rank[i], end = " ")
          
# Driver Code
if __name__ == '__main__':
  
    # Given array A[]
    A = [ 1, 2, 3, 5, 4 ]
  
    N = len(A)
  
    # Function call
    findRank(A, N)
  
# This code is contributed by mohit kumar 29

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program to implement
// the above approach
using System;
using System.Collections.Generic;
using System.Linq;
  
class GFG{
      
// Function to find relative rank for
// each element in the array A[]
static void findRank(int[] A, int N)
{
      
    // Create Rank Array
    int[] rank = new int[N];
  
    // Stack to store numbers in
    // non-decreasing order from right
    Stack<int> s = new Stack<int>();
  
    // Push last element in stack
    s.Push(A[N - 1]);
  
    // Iterate from second last
    // element to first element
    for(int i = N - 2; i >= 0; i--)
    {
  
        // If current element is less
        // than the top of stack and
        // push A[i] in stack
        if (A[i] < s.Peek())
        {
            s.Push(A[i]);
  
            // Rank is stack size - 1
            // for current element
            rank[i] = s.Count() - 1;
        }
        else
        {
  
            // Pop elements from stack
            // till current element is
            // greater than the top
            while (s.Count() != 0 && 
                   A[i] >= s.Peek())
            {
                s.Pop();
            }
  
            // Push current element in Stack
            s.Push(A[i]);
  
            // Rank is stack size - 1
            rank[i] = s.Count() - 1;
        }
    }
  
    // Print rank of all elements
    for(int i = 0; i < N; i++)
    {
        Console.Write(rank[i] + " ");
    }
}
  
// Driver Code
public static void Main()
{
      
    // Given array A[]
    int[] A = new int[] { 1, 2, 3, 5, 4 };
  
    int N = A.Length;
  
    // Function call
    findRank(A, N);
}
}
  
// This code is contributed by sanjoy_62

chevron_right


Output:

3 2 1 0 0


Time Complexity: O(N)
Auxiliary Space: O(1)

competitive-programming-img

My Personal Notes arrow_drop_up
Recommended Articles
Page :