Open In App
Related Articles

Find the rank of a given combination from an Array of String

Improve
Improve
Improve
Like Article
Like
Save Article
Save
Report issue
Report

Given an array of string and a string K, the task is to find the rank of the given string if we generate all the combinations of the given array of strings.

Examples:

Input: string = [‘ab’, ‘pq’, ‘nm’], K = ‘pqnm’
Output: 7
Explanation: All combination generated are :-
”   ——————-> rank 1
‘ab’  —————–> rank 2
‘pq’  —————–> rank 3
‘nm’  —————-> rank 4
‘abpq’  ————–> rank 5
‘abnm’  ————–> rank 6
‘pqnm’  ————–> rank 7
‘abpqnm’ ————> rank 8

‘pqnm’ is at rank is generated at rank 7

Input: string = [‘a’, ‘b’], K = ‘aa’
Output: -1
Explanation: ‘aa’ cannot be generated by any combination of given element.

Approach: To solve the problem follow the below idea:

Generates the powerset of a given list of strings using the combinations function from the itertools module and a nested loop. It then calculates the rank of a target string in that powerset using the index function and returns -1 if the target string is not in the powerset. The code defines a list of strings and a target string, calls the get_rank function, and prints the rank.

Below are the steps for the above approach:

  • Import the combinations function from the itertools module.
  • Define a function to generate the powerset of a given list of strings.
    • Initialize the powerset with an empty string.
    • Loop over all possible lengths of subsets from 1 to the length of the input list.
    • Use the combinations function to generate all possible subsets of the current length.
    • Join the elements of each combination into a single string and append it to the powerset.
    • Return the final powerset.
  • Define a function to get the rank of a given string in the powerset of a list of strings.
    • Generate the powerset of the input string list using the get_powerset function.
    • If the target string is not in the powerset, return -1.
    • Otherwise, return the index of the target string in the sorted powerset, plus 1.
  • Get the rank of the target string in the powerset of the input string list using the get_rank function.
  • Print the rank.

Below is the code for the above approach:

C++

#include <bits/stdc++.h>
using namespace std;
 
// Define a function to generate the
// powerset of a given list of strings
vector<string> get_powerset(vector<string> string_list)
{
 
    // Initialize the powerset with
    // the empty string
    vector<string> powerset = { "" };
 
    // Loop over all possible
    // lengths of subsets
    for (int i = 1; i <= string_list.size(); i++) {
 
        // Generate all combinations
        // of subsets of length i
        vector<bool> bitmask(i, true);
        bitmask.resize(string_list.size(), false);
 
        do {
            string subset = "";
            for (int j = 0; j < string_list.size(); j++) {
                if (bitmask[j]) {
                    subset += string_list[j];
                }
            }
 
            // Add the generated subset to the powerset
            powerset.push_back(subset);
        } while (prev_permutation(bitmask.begin(),
                                  bitmask.end()));
    }
 
    // Return the final powerset
    return powerset;
}
 
// Define a function to get the rank
// of a given string in the powerset
// of a list of strings
int get_rank(vector<string> string_list, string k)
{
 
    // Generate the powerset of
    // the input string list
    vector<string> powerset = get_powerset(string_list);
 
    // If the target string is not
    // in the powerset, return -1
    if (find(powerset.begin(), powerset.end(), k)
        == powerset.end()) {
        return -1;
    }
 
    // Otherwise, return the index of
    // the target string in the
    // sorted powerset, plus 1
    return distance(powerset.begin(),
                    lower_bound(powerset.begin(),
                                powerset.end(), k))
           + 1;
}
 
int main()
{
    vector<string> string_list = { "ab", "pq", "nm" };
    string k = "pqnm";
 
    // Get the rank of the target string
    // in the powerset of the
    // input string list
    int rank = get_rank(string_list, k);
 
    // Print the rank
    cout << rank << endl;
 
    return 0;
}

                    

Java

// Java code for the approach
 
import java.util.*;
 
public class GFG {
      // Define a function to generate the
    // powerset of a given list of strings
    public static List<String> get_powerset(List<String> string_list) {
          // Initialize the powerset with
        // the empty string
        List<String> powerset = new ArrayList<>();
        powerset.add("");
           
          // Loop over all possible
        // lengths of subsets
        for (int i = 1; i <= string_list.size(); i++) {
            for (List<String> combination : combinations(string_list, i)) {
                String subset = String.join("", combination);
                powerset.add(subset);
            }
        }
       
          // Return the final powerset
        return powerset;
    }
     
      // Define a function to get the rank
    // of a given string in the powerset
    // of a list of strings
    public static int get_rank(List<String> string_list, String k) {
          // Generate the powerset of
        // the input string list
        List<String> powerset = get_powerset(string_list);
           
          // If the target string is not
        // in the powerset, return -1
        if (!powerset.contains(k)) {
            return -1;
        }
       
          // Otherwise, return the index of
        // the target string in the
        // sorted powerset, plus 1
        return powerset.indexOf(k) + 1;
    }
 
    public static <T> Iterable<List<T>> combinations(List<T> items, int n) {
        if (n == 0) {
            return Collections.singletonList(Collections.emptyList());
        } else {
            List<List<T>> result = new ArrayList<>();
            for (int i = 0; i <= items.size() - n; i++) {
                T item = items.get(i);
                for (List<T> combination : combinations(items.subList(i+1, items.size()), n-1)) {
                    List<T> list = new ArrayList<>();
                    list.add(item);
                    list.addAll(combination);
                    result.add(list);
                }
            }
            return result;
        }
    }
 
    public static void main(String[] args) {
        List<String> string_list = Arrays.asList("ab", "pq", "nm");
        String k = "pqnm";
           
        // Get the rank of the target string
        // in the powerset of the
        // input string list
        int rank = get_rank(string_list, k);
       
        System.out.println(rank); // Output: 7
    }
}

                    

Python

# Import the combinations function
# from the itertools module
from itertools import combinations
 
# Define a function to generate the
# powerset of a given list of strings
 
 
def get_powerset(string_list):
 
    # Initialize the powerset with
    # the empty string
    powerset = ['']
 
    # Loop over all possible
    # lengths of subsets
    for i in range(1, len(string_list)+1):
 
        # Generate all combinations
        # of subsets of length i
        for combination in combinations(string_list, i):
 
            # Join the elements of each
            # combination into a single string
            powerset.append(''.join(combination))
 
    # Return the final powerset
    return powerset
 
# Define a function to get the rank
# of a given string in the powerset
# of a list of strings
 
 
def get_rank(string_list, k):
 
    # Generate the powerset of
    # the input string list
    powerset = get_powerset(string_list)
    # If the target string is not
    # in the powerset, return -1
    if k not in powerset:
        return -1
    # Otherwise, return the index of
    # the target string in the
    # sorted powerset, plus 1
    return powerset.index(k) + 1
 
 
# Define a list of strings
# and a target string
string_list = ['ab', 'pq', 'nm']
k = 'pqnm'
 
# Get the rank of the target string
# in the powerset of the
# input string list
rank = get_rank(string_list, k)
 
# Print the rank
print(rank)

                    

C#

// C# code for the approach
using System;
using System.Collections.Generic;
using System.Linq;
 
public class GFG
{
 
  // Define a function to generate the
  // powerset of a given list of strings
  public static List<string>
    get_powerset(List<string> string_list)
  {
 
    // Initialize the powerset with
    // the empty string
    List<string> powerset = new List<string>();
    powerset.Add("");
 
    // Loop over all possible
    // lengths of subsets
    for (int i = 1; i <= string_list.Count; i++) {
      foreach(List<string> combination in
              combinations(string_list, i))
      {
        string subset
          = string.Join("", combination);
        powerset.Add(subset);
      }
    }
 
    // Return the final powerset
    return powerset;
  }
 
  // Define a function to get the rank
  // of a given string in the powerset
  // of a list of strings
  public static int get_rank(List<string> string_list,
                             string k)
  {
 
    // Generate the powerset of
    // the input string list
    List<string> powerset = get_powerset(string_list);
 
    // If the target string is not
    // in the powerset, return -1
    if (!powerset.Contains(k)) {
      return -1;
    }
 
    // Otherwise, return the index of
    // the target string in the
    // sorted powerset, plus 1
    return powerset.IndexOf(k) + 1;
  }
 
  public static IEnumerable<IEnumerable<T> >
    combinations<T>(IEnumerable<T> items, int n)
  {
    if (n == 0) {
      return new[] { Enumerable.Empty<T>() };
    }
    else {
      List<List<T> > result = new List<List<T> >();
      for (int i = 0; i <= items.Count() - n; i++) {
        T item = items.ElementAt(i);
        foreach(IEnumerable<T> combination in
                combinations(items.Skip(i + 1),
                             n - 1))
        {
          List<T> list = new List<T>();
          list.Add(item);
          list.AddRange(combination);
          result.Add(list);
        }
      }
      return result;
    }
  }
 
  public static void Main()
  {
    List<string> string_list
      = new List<string>() { "ab", "pq", "nm" };
    string k = "pqnm";
 
    // Get the rank of the target string
    // in the powerset of the
    // input string list
    int rank = get_rank(string_list, k);
 
    Console.WriteLine(rank); // Output: 7
  }
}
 
// This code is contributed by user_dtewbxkn77n

                    

Javascript

// Define a function to generate the
// powerset of a given list of strings
function getPowerset(stringList) {
  // Initialize the powerset with
  //the empty string
  let powerset = [""];
 
  // Loop over all possible
  //lengths of subsets
  for (let i = 1; i <= stringList.length; i++) {
    // Generate all combinations
    // of subsets of length i
    let bitmask = new Array(i).fill(true);
    bitmask = bitmask.concat(new Array(stringList.length - i).fill(false));
 
    do {
      let subset = "";
      for (let j = 0; j < stringList.length; j++) {
        if (bitmask[j]) {
          subset += stringList[j];
        }
      }
 
      // Add the generated subset to the powerset
      powerset.push(subset);
    } while (prevPermutation(bitmask));
  }
 
  // Return the final powerset
  return powerset;
}
 
// Helper function to generate
// the previous permutation
function prevPermutation(array) {
  let i = array.length - 1;
  while (i > 0 && array[i - 1] <= array[i]) {
    i--;
  }
  if (i <= 0) {
    return false;
  }
 
  let j = array.length - 1;
  while (array[j] >= array[i - 1]) {
    j--;
  }
 
  let temp = array[i - 1];
  array[i - 1] = array[j];
  array[j] = temp;
 
  j = array.length - 1;
  while (i < j) {
    temp = array[i];
    array[i] = array[j];
    array[j] = temp;
    i++;
    j--;
  }
 
  return true;
}
 
// Define a function to get the rank
// of a given string in the powerset
// of a list of strings
function getRank(stringList, k) {
  // Generate the powerset of
  // the input string list
  let powerset = getPowerset(stringList);
 
  // If the target string is not
  // in the powerset, return -1
  if (!powerset.includes(k)) {
    return -1;
  }
 
  // Otherwise, return the index of
  // the target string in the
  // sorted powerset, plus 1
  return powerset.indexOf(k) + 1;
}
 
// Main
let stringList = ["ab", "pq", "nm"];
let k = "pqnm";
 
// Get the rank of the target string
// in the powerset of the
// input string list
let rank = getRank(stringList, k);
 
// Print the rank
console.log(rank);

                    

Output
7


Time complexity: O(n * 2n * log(n))  to generate the power set O(2n), sorting the power set  O(n * 2n * log(n)) and finding the index O(n * 2n). 
Auxiliary space: O(2n) to store all generated combinations.



Last Updated : 07 Jul, 2023
Like Article
Save Article
Previous
Next
Share your thoughts in the comments
Similar Reads